scholarly journals Pattern Formation in a Cross-Diffusive Holling-Tanner Model

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Weiming Wang ◽  
Zhengguang Guo ◽  
R. K. Upadhyay ◽  
Yezhi Lin

We present a theoretical analysis of the processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with self- as well as cross-diffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a spatial domain is presented, too. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- as well as cross-diffusion in the model, and find that the model dynamics exhibits a cross-diffusion controlled formation growth not only to spots, but also to strips, holes, and stripes-spots replication. And the methods and results in the present paper may be useful for the research of the pattern formation in the cross-diffusive model.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinze Lian ◽  
Shuling Yan ◽  
Hailing Wang

We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Boli Xie ◽  
Zhijun Wang ◽  
Yakui Xue

A predator-prey model with both cross diffusion and time delay is considered. We give the conditions for emerging Turing instability in detail. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the model dynamics exhibits a delay and diffusion controlled formation growth not only of spots and stripe-like patterns, but also of the two coexist. The obtained results show that this system has rich dynamics; these patterns show that it is useful for the diffusive predation model with a delay effect to reveal the spatial dynamics in the real model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Rao

This paper proposes and analyzes a mathematical model for a predator-prey interaction with the Allee effect on prey species and with self- and cross-diffusion. The effect of diffusion which can drive the model with zero-flux boundary conditions to Turing instability is investigated. We present numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth to spotted and striped-like coexisting and spotted pattern replication. Moreover, we discuss the effect of cross-diffusivity on the stability of the nontrivial equilibrium of the model, which depends upon the magnitudes of the self- and cross-diffusion coefficients. The obtained results show that cross-diffusion plays an important role in the pattern formation of the predator-prey model. It is also useful to apply the reaction-diffusion model to reveal the spatial predation in the real world.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoqin Wang ◽  
Yongli Cai

We present a theoretical analysis of processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with cross-diffusion in a Harrison-type predator-prey model. We analyze the global behaviour of the model by establishing a Lyapunov function. We carry out the analytical study in detail and find out the certain conditions for Turing’s instability induced by cross-diffusion. And the numerical results reveal that, on increasing the value of the half capturing saturation constant, the sequences “spots → spot-stripe mixtures → stripes → hole-stripe mixtures → holes” are observed. The results show that the model dynamics exhibits complex pattern replication controlled by the cross-diffusion.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Weiming Wang ◽  
Yongli Cai ◽  
Yanuo Zhu ◽  
Zhengguang Guo

We investigate the spatiotemporal dynamics induced by Allee effect in a reaction-diffusion predator-prey model. In the case without Allee effect, there is nonexistence of diffusion-driven instability for the model. And in the case with Allee effect, the positive equilibrium may be unstable under certain conditions. This instability is induced by Allee effect and diffusion together. Furthermore, via numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes, stripes-holes mixture, stripes, stripes-spots mixture, and spots replication, which shows that the dynamics of the model with Allee effect is not simple, but rich and complex.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950146
Author(s):  
Wen Wang ◽  
Shutang Liu ◽  
Zhibin Liu ◽  
Da Wang

In this paper, a diffusive predator–prey model is considered in which the predator and prey populations both exhibit schooling behavior. The system’s spatial dynamics are captured via a suitable threshold parameter, and a sequence of spatiotemporal patterns such as hexagons, stripes and a mixture of the two are observed. Specifically, the linear stability analysis is applied to obtain the conditions for Hopf bifurcation and Turing instability. Then, employing the multiple-scale analysis, the amplitude equations near the critical point of Turing bifurcation are derived, through which the selection and stability of pattern formations are investigated. The theoretical results are verified by numerical simulations.


Author(s):  
Purnedu Mishra ◽  
Barkha Tiwari

AbstractExistence of predator is routinely used to induce fear and anxiety in prey which is well known for shaping entire ecosystem. Fear of predation restricts the development of prey and promotes inducible defense in prey communities for the survival. Motivated by this fact, we investigate the dynamics of a Leslie–Gower predator prey model with group defense in a fearful prey. We obtain conditions under which system possess unique global-in-time solutions and determine all the biological feasible states of the system. Local stability is analyzed by linearization technique and Lyapunov direct method has been applied for global stability analysis of steady states. We show the occurrence of Hopf bifurcation and its direction at the vicinity of coexisting equilibrium point for temporal model. We consider random movement in species and establish conditions for the stability of the system in the presence of diffusion. We derive conditions for existence of non-constant steady states and Turing instability at coexisting population state of diffusive system. Incorporating indirect prey taxis with the assumption that the predator moves toward the smell of prey rather than random movement gives rise to taxis-driven inhomogeneous Hopf bifurcation in predator–prey model. Numerical simulations are intended to demonstrate the role of biological as well as physical drivers on pattern formation that go beyond analytical conclusions.


Sign in / Sign up

Export Citation Format

Share Document