scholarly journals Drivers of pattern formation in a predator–prey model with defense in fearful prey

Author(s):  
Purnedu Mishra ◽  
Barkha Tiwari

AbstractExistence of predator is routinely used to induce fear and anxiety in prey which is well known for shaping entire ecosystem. Fear of predation restricts the development of prey and promotes inducible defense in prey communities for the survival. Motivated by this fact, we investigate the dynamics of a Leslie–Gower predator prey model with group defense in a fearful prey. We obtain conditions under which system possess unique global-in-time solutions and determine all the biological feasible states of the system. Local stability is analyzed by linearization technique and Lyapunov direct method has been applied for global stability analysis of steady states. We show the occurrence of Hopf bifurcation and its direction at the vicinity of coexisting equilibrium point for temporal model. We consider random movement in species and establish conditions for the stability of the system in the presence of diffusion. We derive conditions for existence of non-constant steady states and Turing instability at coexisting population state of diffusive system. Incorporating indirect prey taxis with the assumption that the predator moves toward the smell of prey rather than random movement gives rise to taxis-driven inhomogeneous Hopf bifurcation in predator–prey model. Numerical simulations are intended to demonstrate the role of biological as well as physical drivers on pattern formation that go beyond analytical conclusions.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinze Lian ◽  
Shuling Yan ◽  
Hailing Wang

We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850140 ◽  
Author(s):  
Yongli Cai ◽  
Zhanji Gui ◽  
Xuebing Zhang ◽  
Hongbo Shi ◽  
Weiming Wang

In this paper, we investigate the spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge subject to the Neumann boundary conditions. We mainly consider Hopf bifurcation and steady-state bifurcation which bifurcate from the constant positive steady-state of the model. In the case of Hopf bifurcation, by the center manifold theory and the normal form method, we establish the bifurcation direction and stability of bifurcating periodic solutions; in the case of steady-state bifurcation, by the local and global bifurcation theories, we prove the existence of the steady-state bifurcation, and find that there are two typical bifurcations, Turing bifurcation and Turing–Hopf bifurcation. Via numerical simulations, we find that the model exhibits not only stationary Turing pattern induced by diffusion which is dependent on space and independent of time, but also temporal periodic pattern induced by Hopf bifurcation which is dependent on time and independent of space, and spatiotemporal pattern induced by Turing–Hopf bifurcation which is dependent on both time and space. These results may enrich the pattern formation in the predator–prey model.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550013 ◽  
Author(s):  
M. Sivakumar ◽  
M. Sambath ◽  
K. Balachandran

In this paper, we consider a diffusive Holling–Tanner predator–prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, existence of a Hopf bifurcation at the co-existence of the equilibrium and stability of bifurcating periodic solutions of the system in the absence of diffusion. Furthermore the Turing instability and Hopf bifurcation analysis of the system with diffusion are studied. Finally numerical simulations are given to demonstrate the effectiveness of the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Yang

The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained. And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes mixtures, and spots Turing patterns.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650085 ◽  
Author(s):  
Lakshmi Narayan Guin ◽  
Benukar Mondal ◽  
Santabrata Chakravarty

The pattern formation in reaction–diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal existence and importance. The present investigation deals with a spatial dynamics of the Beddington–DeAngelis predator–prey model in the presence of a constant proportion of prey refuge. The model system representing boundary value problem under study is subjected to homogeneous Neumann boundary conditions. The asymptotic stability including the local and the global stability and the bifurcation as well of the unique positive homogeneous steady state of the corresponding temporal model has been analyzed. The Turing instability region in two-parameter space and the condition of diffusion-driven instability of the spatiotemporal model are investigated. Based on the appropriate numerical simulations, the present model dynamics in Turing space appears to get influenced by prey refuge while it exhibits diffusion-controlled pattern formation growth to spots, stripe-spot mixtures, labyrinthine, stripe-hole mixtures and holes replication. The results obtained appear to enrich the findings of the model system under consideration.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hua Liu ◽  
Yong Ye ◽  
Yumei Wei ◽  
Weiyuan Ma ◽  
Ming Ma ◽  
...  

In this paper, we establish a reaction-diffusion predator-prey model with weak Allee effect and delay and analyze the conditions of Turing instability. The effects of Allee effect and delay on pattern formation are discussed by numerical simulation. The results show that pattern formations change with the addition of weak Allee effect and delay. More specifically, as Allee effect constant and delay increases, coexistence of spotted and stripe patterns, stripe patterns, and mixture patterns emerge successively. From an ecological point of view, we find that Allee effect and delay play an important role in spatial invasion of populations.


Sign in / Sign up

Export Citation Format

Share Document