scholarly journals Symmetry Classification of First Integrals for Scalar Linearizable Second-Order ODEs

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
K. S. Mahomed ◽  
E. Momoniat

Symmetries of the fundamental first integrals for scalar second-order ordinary differential equations (ODEs) which are linear or linearizable by point transformations have already been obtained. Firstly we show how one can determine the relationship between the symmetries and the first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete classification of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we provide a counting theorem for the point symmetries of first integrals of scalar linearizable second-order ODEs. We show that there exists the 0-, 1-, 2-, or 3-point symmetry cases. It is shown that the maximal algebra case is unique.

2006 ◽  
Vol 49 (2) ◽  
pp. 170-184
Author(s):  
Richard Atkins

AbstractThis paper investigates the relationship between a system of differential equations and the underlying geometry associated with it. The geometry of a surface determines shortest paths, or geodesics connecting nearby points, which are defined as the solutions to a pair of second-order differential equations: the Euler–Lagrange equations of the metric. We ask when the converse holds, that is, when solutions to a system of differential equations reveals an underlying geometry. Specifically, when may the solutions to a given pair of second order ordinary differential equations d2y1/dt2 = f (y, ẏ, t) and d2y2/dt2 = g(y, ẏ, t) be reparameterized by t → T(y, t) so as to give locally the geodesics of a Euclidean space? Our approach is based upon Cartan's method of equivalence. In the second part of the paper, the equivalence problem is solved for a generic pair of second order ordinary differential equations of the above form revealing the existence of 24 invariant functions.


2013 ◽  
Vol 82 (1) ◽  
pp. 17-30 ◽  
Author(s):  
S. V. Meleshko ◽  
S. Moyo ◽  
C. Muriel ◽  
J. L. Romero ◽  
P. Guha ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Winter Sinkala

Transformations of differential equations to other equivalent equations play a central role in many routines for solving intricate equations. A class of differential equations that are particularly amenable to solution techniques based on such transformations is the class of linearisable second-order ordinary differential equations (ODEs). There are various characterisations of such ODEs. We exploit a particular characterisation and the expanded Lie group method to construct a generic solution for all linearisable second-order ODEs. The general solution of any given equation from this class is then easily obtainable from the generic solution through a point transformation constructed using only two suitably chosen symmetries of the equation. We illustrate the approach with three examples.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Sakka Sookmee ◽  
Sergey V. Meleshko

The necessary form of a linearizable system of two second-order ordinary differential equations y1″=f1(x,y1,y2,y1′,y2′), y2″=f2(x,y1,y2,y1′,y2′) is obtained. Some other necessary conditions were also found. The main problem studied in the paper is to obtain criteria for a system to be equivalent to a linear system with constant coefficients under fiber preserving transformations. A linear system with constant coefficients is chosen because of its simplicity in finding the general solution. Examples demonstrating the procedure of using the linearization theorems are presented.


Sign in / Sign up

Export Citation Format

Share Document