scholarly journals Stochasticℋ∞Finite-Time Control of Discrete-Time Systems with Packet Loss

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yingqi Zhang ◽  
Wei Cheng ◽  
Xiaowu Mu ◽  
Caixia Liu

This paper investigates the stochastic finite-time stabilization andℋ∞control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochasticℋ∞finite-time boundedness and then state feedback controllers are designed to guarantee stochasticℋ∞finite-time stabilization of the class of stochastic systems. The stochasticℋ∞finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yingqi Zhang ◽  
Caixia Liu ◽  
Xiaowu Mu

This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.


2012 ◽  
Vol 22 (4) ◽  
pp. 451-465 ◽  
Author(s):  
Tadeusz Kaczorek

A new modified state variable diagram method is proposed for determination of positive realizations with reduced numbers of delays and without delays of linear discrete-time systems for a given transfer function. Sufficient conditions for the existence of the positive realizations of given proper transfer function are established. It is shown that there exists a positive realization with reduced numbers of delays if there exists a positive realization without delays but with greater dimension. The proposed methods are demonstrated on a numerical example.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fucheng Liao ◽  
Yingxue Wu ◽  
Xiao Yu ◽  
Jiamei Deng

A finite-time bounded tracking control problem for a class of linear discrete-time systems subject to disturbances is investigated. Firstly, by applying a difference method to constructing the error system, the problem is transformed into a finite-time boundedness problem of the output vector of the error system. In fact, this is a finite-time boundedness problem with respect to the partial variables. Secondly, based on the partial stability theory and the research methods of finite-time boundedness problem, a state feedback controller formulated in form of linear matrix inequality is proposed. Based on this, a finite-time bounded tracking controller of the original system is obtained. Finally, a numerical example is presented to illustrate the effectiveness of the controller.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141667980
Author(s):  
Yang Guo ◽  
Xiaoxiang Hu ◽  
Biao Deng ◽  
Shuai Zhang ◽  
Yu Jiang

This article presents finite-time stabilization methods of switched linear systems with disturbances. After extending finite-time stabilization and finite-time boundedness definitions to switched linear systems, sufficient conditions guaranteeing system finite-time boundedness are proposed, by which the state feedback controller method is obtained. For a class of switched terminal guidance systems, the methods are illustrated by application to guidance design to solve the finite-time stabilization problem considering nonzero initial conditions and state constraints.


Author(s):  
Mikołaj Busłowicz ◽  
Tadeusz Kaczorek

Simple Conditions for Practical Stability of Positive Fractional Discrete-Time Linear SystemsIn the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical examples.


Author(s):  
Tadeusz Kaczorek

A new method for computation of positive realizations of given transfer matrices of linear discrete-time linear systems is proposed. Sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by an example.  


Sign in / Sign up

Export Citation Format

Share Document