scholarly journals Porosity Distribution in Composite Structures with Infrared Thermography

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cinzia Toscano ◽  
Carosena Meola ◽  
Giovanni Maria Carlomagno

Composite structures are increasingly used in the transport industry especially in the aeronautical sector thanks to their favorable strength-to-weight ratio with respect to metals. However, this is true if the final part is defects free and complies with quality requirements. A main weakness in composites is porosity, which is likely to be introduced during manufacturing processes and which may knock down the material characteristics affecting its performance in service. Porosity plays a key role in sandwich structures, which involve novel metal foams as core, since the foam performance strongly depends on size and distribution of pores. The determination of porosity is mostly attained by destructive methods, which supply only a general indication linked to the production part number. Conversely, composites may entail local significant variation of porosity, which may be discovered only with effective nondestructive techniques. The attention of the present work is focused on the possibility to use infrared thermography to get information about the amount and distribution of porosity. In particular, two techniques: flash thermography and lock-in thermography are used to comply with requirements of both monolithic composites and metal foams.

2008 ◽  
Vol 41 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Manyong Choi ◽  
Kisoo Kang ◽  
Jeonghak Park ◽  
Wontae Kim ◽  
Koungsuk Kim

2018 ◽  
Vol 210 ◽  
pp. 05007
Author(s):  
Anna Stoynova ◽  
Borislav Bonev

At present, lock-in thermography is widely used non-destructive method for defects detection. The informative images in lock-in thermography (e.g. phasegram) are obtained after temperature signal filtering of the raw data. The postprocessing in lock-in thermography is more complex than in other active thermography methods and very important for defects detectability. In some cases the standard postprocessing can significantly decrease the quality of the temperature signal filtering, respectively decreasing defects detectability, although the parameters of lock-in thermography measurement are selected correctly. The aim of the paper is to study the quality of temperature signal filtering in lock-in thermography depending on used offline postprocessing. For this reason, a methodology based on modelling and measurements of temperature signals from infrared thermography for determination of cases, in which the temperature signal filtering quality is decreased significantly, is used and corresponded methods for correction are proposed. The results from modelling and from real lock-in thermography measurements shows that by using of the proposed methods can be avoided decreasing of temperature signal filtering quality due to improper postprocessing. In addition, the proposed methods allow same defect detectability at lower energy, induced in tested sample, which is very useful for materials that are not sufficiently heat-resistant.


2015 ◽  
Vol 62 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Khalid Muzaffar ◽  
Suneet Tuli ◽  
Shiban K. Koul

2021 ◽  
pp. 95-104
Author(s):  
A.D. Monakhov ◽  
◽  
N.O. Yakovlev ◽  
V.V. Avtaev ◽  
E.A. Kotova ◽  
...  

The paper presents an overview of methods for determining residual stresses. Methods such as splitting and segmentation, layer-by-layer removal, slitting (cutting, pliability), profiling, drilling holes (including a «deep» hole) are considered. The description of the methods for mea-suring the deformation used in the determination of residual stresses is given. The most common contact method using strain gauges, as well as non-contact methods: polarization-optical (photo-elasticity), optical speckle interferometry, digital image correlation.


Sign in / Sign up

Export Citation Format

Share Document