scholarly journals Radiation and Magnetohydrodynamics Effects on Unsteady Free Convection Flow in a Porous Medium

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sami Ulhaq ◽  
Ilyas Khan ◽  
Farhad Ali ◽  
Sharidan Shafie

The unsteady MHD free convection flow near an exponentially accelerated infinite vertical plate through porous medium with uniform heat flux in the presence of thermal radiation has been considered. The mathematical model, under the usual Boussinesq approximation, was reduced to a system of coupled linear partial differential equations for velocity and temperature. Exact solutions are obtained by the Laplace transform method. The influence of pertinent parameters such as the radiation parameter, Grashof number, Prandtl number, and time on velocity, temperature, and skin friction is shown by graphs.

2015 ◽  
Vol 362 ◽  
pp. 100-107 ◽  
Author(s):  
Z. Ismail ◽  
I. Khan ◽  
A.Q. Mohamad ◽  
S. Shafie

Rotating effects and magnetohydrodynamic (MHD) free convection flow of second grade fluids in a porous medium is considered in this paper. It is assumed that the bounding infinite inclined plate has ramped wall temperature with the presence of heat and mass diffusion. Based on Boussinesq approximation, the analytical expressions for dimensionless velocity, temperature and concentration are obtained by using the Laplace transform method. All the derived solutions satisfying the involved differential equations with imposed boundary and initial conditions. The influence of various parameters on the velocity has been analyzed in graphs and discussed.


2015 ◽  
Vol 756 ◽  
pp. 469-475
Author(s):  
Anna A. Bocharova ◽  
Irina V. Plaksina ◽  
Andrey A. Obushnyy

The mathematical model based on system of momentum and energy equations for free convection flow along a vertical surface in porous media under boundary conditions of the third sort is solved analytically using the method of matched asymptotic expansions. The region of validity for boundary layer model and expansions for stream function and temperature with parameter of perturbations were defined. The dependence of characteristic flow from governing dimensionless parameters and was analyzed numerically. The influence of viscous and convective terms of momentum equation in the proposed mathematical model significantly increases the rate of heat transfer on plate in porous media in comparison with Darsy flow model.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e88766 ◽  
Author(s):  
Samiulhaq ◽  
Sohail Ahmad ◽  
Dumitru Vieru ◽  
Ilyas Khan ◽  
Sharidan Shafie

Sign in / Sign up

Export Citation Format

Share Document