scholarly journals Dynamics of a Single Species in a Fluctuating Environment under Periodic Yield Harvesting

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mustafa Hasanbulli ◽  
Svitlana P. Rogovchenko ◽  
Yuriy V. Rogovchenko

We discuss the effect of a periodic yield harvesting on a single species population whose dynamics in a fluctuating environment is described by the logistic differential equation with periodic coefficients. This problem was studied by Brauer and Sánchez (2003) who attempted the proof of the existence of two positive periodic solutions; the flaw in their argument is corrected. We obtain estimates for positive attracting and repelling periodic solutions and describe behavior of other solutions. Extinction and blow-up times are evaluated for solutions with small and large initial data; dependence of the number of periodic solutions on the parameterσassociated with the intensity of harvesting is explored. Asσgrows, the number of periodic solutions drops from two to zero. We provide bounds for the bifurcation parameter whose value in practice can be efficiently approximated numerically.

2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Hui Fang

By coincidence degree theory fork-set-contractive mapping, this paper establishes a new criterion for the existence of at least two positive periodic solutions for a neutral delay model of single-species population growth with harvesting. An example is given to illustrate the effectiveness of the result.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Wenjie Qin ◽  
Zhijun Liu

A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.


Sign in / Sign up

Export Citation Format

Share Document