scholarly journals Moderating Material to Compensate the Drawback of High Minor Actinide Containing Transmutation Fuel on the Feedback Effects in SFR Cores

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bruno Merk

The use of fine distributed moderating material to enhance the feedback effects and to reduce the sodium void effecting SFRs is described. The drawback on the feedback effects due to the introduction of minor actinides into SFR fuel is analyzed. The possibility of compensation of the effect of the minor actinides on the feedback effects by the use of fine distributed moderating material is demonstrated. The consequences of the introduction of fine distributed moderating material into fuel assemblies with fuel configurations foreseen for minor actinide transmutation are analyzed, and the positive effects on the transmutation efficiency are shown. Finally, the possible increase of the Americium content to improve the transmutation efficiency is discussed, the limit value of Americium is determined, and the possibilities given by an increase of the hydrogen content are analyzed.

Author(s):  
Wenxin Zhang ◽  
Haoyang Yu ◽  
Bin Liu ◽  
Jin Cai ◽  
Shuangshuang Cui

Minor actinides in the spent fuel have strong radiotoxicity and very long half-life, the the properly dispose of spent fuel is indispensible to the development of nucler energy. Generally,we dispose the spent fuel by geological burying. But it can not compeletly solve the problem. Neutron transmutation is the only way to shorten the half-life of radioactive nuclides, under the irradiation of neutron MA nuclide will capture neutron or fission, and translate into the short lived nuclide or something valued nuclide. Reactivity temperature coefficient is an improtant safety parameter in nuclear reactor physics.In the reactor design, for the safely operation of reactor, reactivity temperature coefficient must be be negative. The introduction of MA in the PWR must have interference to the temperature coefficient. This paper mainly studied the influence of PWR transmutation minor actinide on the temperature coefficient.


2021 ◽  
Vol 9 (4) ◽  
pp. 16-26
Author(s):  
Vinh Thanh Tran ◽  
Thanh Mai Vu ◽  
Van Khanh Hoang ◽  
Viet Ha Pham Nhu

The feasibility of transmutation of minor actinides recycled from the spent nuclear fuel in the VVER-1000 LEU (low enriched uranium) fuel assembly as burnable poison was examined in our previous study. However, only the minor actinide vector of the VVER-440 spent fuel was considered. In this paper, various vectors of minor actinides recycled from the spent fuel of VVER-440, PWR-1000, and VVER-1000 reactors were therefore employed in the analysis in order to investigate the minor actinide transmutation efficiency of the VVER-1000 fuel assembly with different minor actinide compositions. The comparative analysis was conducted for the two models of minor actinide loading in the LEU fuel assembly: homogeneous mixing in the UGD (Uranium-Gadolinium) pins and coating a thin layer to the UGD pins. The parameters to be analysed and compared include the reactivity of the LEU fuel assembly versus burnup and the transmutation of minor actinide nuclides when loading different minor actinide vectors into the LEU fuel assembly.


2004 ◽  
Vol 23 (2) ◽  
pp. 121-135 ◽  
Author(s):  
Hüseyin Yapııcıı ◽  
Gamze Genç ◽  
Nesrin Demir ◽  
Bilge Çeper

Author(s):  
Haoyang Yu ◽  
Bin Liu ◽  
Wenxin Zhang ◽  
Jin Cai

The minor actinides (MA) is important nuclides in the spent fuel which is bad for human ecological environment. Pressurized water reactor (PWR) is the main reactor type at commercial operation around world. It is important to find the appropriate loading patterns when introducing minor actinides to the PWR core. In this paper, we study the effect of MA transmutation in the PWR on fuel cycle. First, we use the MCNP program to simulate the model of PWR and the effective multiplication factor.Then,the MA is introduced into core in different ways and mass to simulate the effective multiplication factor. In conclusion,without considering chemical skim control and control rods, we change the thickness of the MA, until the keff closes to 1, We find that loading minor actinides to burnable poison rods for transmutation is an optimal minor actinide loading pattern.


2012 ◽  
Vol 180 (2) ◽  
pp. 264-296 ◽  
Author(s):  
Jean-François Pignatel ◽  
Pierre Richard ◽  
Gerald Rimpault ◽  
Julian Murgatroyd ◽  
Richard Stainsby ◽  
...  

2012 ◽  
Vol 180 (2) ◽  
pp. 241-263 ◽  
Author(s):  
L. Mansani ◽  
C. Artioli ◽  
M. Schikorr ◽  
G. Rimpault ◽  
C. Angulo ◽  
...  

Author(s):  
Nozomu FUJIMOTO ◽  
Kiyonobu YAMASHITA ◽  
Kazumi TOKUHARA

Sign in / Sign up

Export Citation Format

Share Document