scholarly journals Minimum Variance Unbiased Estimation in the Gompertz Distribution under Progressive Type II Censored Data with Binomial Removals

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Ashok Shanubhogue ◽  
N. R. Jain

This paper deals with the problem of uniformly minimum variance unbiased estimation for the parameter of the Gompertz distribution based on progressively Type II censored data with binomial removals. We have obtained the uniformly minimum variance unbiased estimator (UMVUE) for powers of the shape parameter and its functions. The UMVUE of the variance of these estimators is also given. The UMVUE of (i) pdf, (ii) cdf, (iii) reliability function, and (iv) hazard function of the Gompertz distribution is derived. Further, an exact % confidence interval for the th quantile is obtained. The UMVUE of pdf is utilized to obtain the UMVUE of . An illustrative numerical example is presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Reza Azimi ◽  
Farhad Yaghmaei

This study considers the estimation problem for the parameter and reliability function of Rayleigh distribution under progressive type II censoring with random removals, where the number of units removed at each failure time has a binomial distribution. We use the maximum likelihood and Bayesian procedures to obtain the estimators of parameter and reliability function of Rayleigh distribution. We also construct the confidence intervals for the parameter of Rayleigh distribution. Monte Carlo simulation method is used to generate a progressive type II censored data with binomial removals from Rayleigh distribution, and then these data are used to compute the point and interval estimations of the parameter and compare both the methods used with different random schemes.



Author(s):  
Aisha Fayomi ◽  
Hamdah Al-Shammari

This paper deals with the problem of parameters estimation of the Exponential-Geometric (EG) distribution based on progressive type-II censored data. It turns out that the maximum likelihood estimators for the distribution parameters have no closed forms, therefore the EM algorithm are alternatively used. The asymptotic variance of the MLEs of the targeted parameters under progressive type-II censoring is computed along with the asymptotic confidence intervals. Finally, a simple numerical example is given to illustrate the obtained results.



2021 ◽  
Vol 2 (3) ◽  
pp. 10-18
Author(s):  
Mohammed Ahmed Al omari

Keeping in view the Bayesian approach, the study aims to develop methods through the utilization of Jeffreys prior and modified Jeffreys prior to the covariate obtained by using the Importance sampling technique. For maximum likelihood estimator, covariate parameters, and the shape parameter of Weibull regression distribution with the censored data of Type II will be estimated by the study. It is shown that the obtained estimators in closed forms are not available, but through the usage of appropriate numerical methods, they can be solved. The mean square error is the criterion of comparison. With the use of simulation, performances of these three estimates are assessed, bearing in mind different censored percentages, and various sizes of the sample.



Sign in / Sign up

Export Citation Format

Share Document