scholarly journals Bayesian using Importance Sampling Technique of Weibull Regression with Type II Censored Data

2021 ◽  
Vol 2 (3) ◽  
pp. 10-18
Author(s):  
Mohammed Ahmed Al omari

Keeping in view the Bayesian approach, the study aims to develop methods through the utilization of Jeffreys prior and modified Jeffreys prior to the covariate obtained by using the Importance sampling technique. For maximum likelihood estimator, covariate parameters, and the shape parameter of Weibull regression distribution with the censored data of Type II will be estimated by the study. It is shown that the obtained estimators in closed forms are not available, but through the usage of appropriate numerical methods, they can be solved. The mean square error is the criterion of comparison. With the use of simulation, performances of these three estimates are assessed, bearing in mind different censored percentages, and various sizes of the sample.

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Ashok Shanubhogue ◽  
N. R. Jain

This paper deals with the problem of uniformly minimum variance unbiased estimation for the parameter of the Gompertz distribution based on progressively Type II censored data with binomial removals. We have obtained the uniformly minimum variance unbiased estimator (UMVUE) for powers of the shape parameter and its functions. The UMVUE of the variance of these estimators is also given. The UMVUE of (i) pdf, (ii) cdf, (iii) reliability function, and (iv) hazard function of the Gompertz distribution is derived. Further, an exact % confidence interval for the th quantile is obtained. The UMVUE of pdf is utilized to obtain the UMVUE of . An illustrative numerical example is presented.


2014 ◽  
Vol 31 (5) ◽  
pp. 741-760 ◽  
Author(s):  
Yin Chan ◽  
Bing Han ◽  
Francis Pascual

2011 ◽  
Vol 88-89 ◽  
pp. 554-558 ◽  
Author(s):  
Bin Wang

An improved importance sampling method with layer simulation optimization is presented in this paper. Through the solution sequence of the components’ optimum biased factors according to their importance degree to system reliability, the presented technique can further accelerate the convergence speed of the Monte-Carlo simulation. The idea is that the multivariate distribution’ optimization of components in power system is transferred to many steps’ optimization based on importance sampling method with different optimum biased factors. The practice is that the components are layered according to their importance degree to the system reliability before the Monte-Carlo simulation, the more forward, the more important, and the optimum biased factors of components in the latest layer is searched while the importance sampling is carried out until the demanded accuracy is reached. The validity of the presented is verified using the IEEE-RTS79 test system.


Sign in / Sign up

Export Citation Format

Share Document