scholarly journals Eigenvalue for Densely Defined Perturbations of Multivalued Maximal Monotone Operators in Reflexive Banach Spaces

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Boubakari Ibrahimou

Let be a real reflexive Banach space and let be its dual. Let be open and bounded such that . Let be maximal monotone with and . Using the topological degree theory developed by Kartsatos and Quarcoo we study the eigenvalue problem where the operator is a single-valued of class . The existence of continuous branches of eigenvectors of infinite length then could be easily extended to the case where the operator is multivalued and is investigated.

2013 ◽  
Vol 11 (5) ◽  
Author(s):  
In-Sook Kim ◽  
Jung-Hyun Bae

AbstractLet X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator λT + C when λ is not an eigenvalue for the pair (T, C), T being single-valued and densely defined.


2005 ◽  
Vol 2005 (2) ◽  
pp. 121-158 ◽  
Author(s):  
Athanassios G. Kartsatos ◽  
Igor V. Skrypnik

LetXbe an infinite-dimensional real reflexive Banach space with dual spaceX∗andG⊂Xopen and bounded. Assume thatXandX∗are locally uniformly convex. LetT:X⊃D(T)→2X∗be maximal monotone andC:X⊃D(C)→X∗quasibounded and of type(S˜+). Assume thatL⊂D(C), whereLis a dense subspace ofX, and0∈T(0). A new topological degree theory is introduced for the sumT+C. Browder's degree theory has thus been extended to densely defined perturbations of maximal monotone operators while results of Browder and Hess have been extended to various classes of single-valued densely defined generalized pseudomonotone perturbationsC. Although the main results are of theoretical nature, possible applications of the new degree theory are given for several other theoretical problems in nonlinear functional analysis.


2021 ◽  
Vol 66 (1) ◽  
pp. 123-126
Author(s):  
Mircea D. Voisei

The goal of this note is to present a new shorter proof for the maximal monotonicity of the Minkowski sum of two maximal monotone multi-valued operators defined in a reflexive Banach space under the classical interiority condition involving their domains.


2003 ◽  
Vol 2003 (10) ◽  
pp. 621-629 ◽  
Author(s):  
Takanori Ibaraki ◽  
Yasunori Kimura ◽  
Wataru Takahashi

We study a sequence of generalized projections in a reflexive, smooth, and strictly convex Banach space. Our result shows that Mosco convergence of their ranges implies their pointwise convergence to the generalized projection onto the limit set. Moreover, using this result, we obtain strong and weak convergence of resolvents for a sequence of maximal monotone operators.


2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Somyot Plubtieng ◽  
Wanna Sriprad

We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).


Sign in / Sign up

Export Citation Format

Share Document