scholarly journals Modified Palmer Drought Severity Index Based on Distributed Hydrological Simulation

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Denghua Yan ◽  
Xiaoliang Shi ◽  
Zhiyong Yang ◽  
Ying Li ◽  
Kai Zhao ◽  
...  

Drought monitoring at large scale is essential for fighting against drought. Aiming at the limitation of acquiring long-time serial soil moisture and actual evapotranspiration for Palmer drought severity index (PDSI), the paper modified the PDSI based on distributed hydrological model on subbasin level in Luanhe river basin, North China. The water balance was simulated using the Soil and Water Assessment Tool (SWAT). Calibration and validation results showed good agreement between simulated and measured discharges, and the SWAT model can be used to predict hydrological processes in the study area. Then the simulation results of main hydrologic components were used to establish PDSI. The verification of the drought indices showed that the modified PDSI based on SWAT model and Palmer drought severity index could better describe the characteristics of regional drought evolution in the Luanhe river basin. High drought frequency areas were mainly distributed in the grassland regions of upstream located in the eastern part of Inner Mongolia plateau, and the drought area had a significant upward trend form 1973 to 2010. Compared with the traditional Palmer drought severity index, the modified PDSI could reflect the spatial heterogeneity of regional drought and improve the physical mechanism of PDSI. The drought monitoring method can provide technical support for comprehensive understanding of drought and effective preventing and relieving of drought disasters.

2013 ◽  
Vol 94 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Qiaozhen Mu ◽  
Maosheng Zhao ◽  
John S. Kimball ◽  
Nathan G. McDowell ◽  
Steven W. Running

Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse ecosocial impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. The authors have developed a method to generate a near-real-time remotely sensed drought severity index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly, and annual frequencies. The new DSI integrates and exploits information from current operational satellite-based terrestrial evapo-transpiration (ET) and vegetation greenness index [normalized difference vegetation index (NDVI)] products, which are sensitive to vegetation water stress. Specifically, this approach determines the annual DSI departure from its normal (2000–11) using the remotely sensed ratio of ET to potential ET (PET) and NDVI. The DSI results were derived globally and captured documented major regional droughts over the last decade, including severe events in Europe (2003), the Amazon (2005 and 2010), and Russia (2010). The DSI corresponded favorably (correlation coefficient r = 0.43) with the precipitation-based Palmer drought severity index (PDSI), while both indices captured similar wetting and drying patterns. The DSI was also correlated with satellite-based vegetation net primary production (NPP) records, indicating that the combined use of these products may be useful for assessing water supply and ecosystem interactions, including drought impacts on crop yields and forest productivity. The remotely sensed global terrestrial DSI enhances capabilities for nearreal-time drought monitoring to assist decision makers in regional drought assessment and mitigation efforts, and without many of the constraints of more traditional drought monitoring methods.


Western Birds ◽  
2021 ◽  
Vol 52 (4) ◽  
pp. 278-295
Author(s):  
Deborah J. House

Aerial surveys from 2003 to 2019 documented the abundance of waterfowl at Bridgeport Reservoir in Mono County, California, from September through mid-November. Waterfowl totals at Bridgeport Reservoir averaged 33,106 ± 4050 (standard error) in the fall. Annual peak counts averaged 10,474 ± 1349, ranging from a low of 2583 in 2014 to the highest single-day count of 23,150 in 2005. Bridgeport Reservoir is a man-made water body in the intermountain West that waterfowl use primarily a mid-migration stopover site, with peak numbers occurring in September. The dominant waterfowl species, the Northern Shoveler (Spatula clypeata), Gadwall (Mareca strepera), Mallard (Anas platyrhynchos), Northern Pintail (A. acuta), and Green-winged Teal (A. crecca), showed both unimodal and bimodal migration chronologies. Regional drought, as indicated by the Palmer drought severity index, combined with a downward trend in waterfowl numbers explained 61.4% of annual variation in fall waterfowl totals. These data may allow future assessment of change in waterfowl abundance at Bridgeport Reservoir in the context of local or regional conditions, and as influenced by climate change.


2017 ◽  
Vol 30 (16) ◽  
pp. 6297-6308 ◽  
Author(s):  
Meng Zhao ◽  
Geruo A ◽  
Isabella Velicogna ◽  
John S. Kimball

Drought monitoring is important for characterizing the timing, extent, and severity of drought for effective mitigation and water management. Presented here is a novel satellite-based drought severity index (DSI) for regional monitoring derived using time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE). The GRACE-DSI enables drought feature comparison across regions and periods, it is unaffected by uncertainties associated with soil water balance models and meteorological forcing data, and it incorporates water storage changes from human impacts including groundwater withdrawals that modify land surface processes and impact water management. Here, the underlying algorithm is described, and the GRACE-DSI performance in the continental United States during 2002–14 is evaluated. It is found that the GRACE-DSI captures documented regional drought events and shows favorable spatial and temporal agreement with the monthly Palmer Drought Severity Index (PDSI) and the U.S. Drought Monitor (USDM). The GRACE-DSI also correlates well with a satellite-based normalized difference vegetation index (NDVI), indicating sensitivity to plant-available water supply changes affecting vegetation growth. Because the GRACE-DSI captures changes in total terrestrial water storage, it complements more traditional drought monitoring tools such as the PDSI by providing information about deeper water storage changes that affect soil moisture recharge and drought recovery. The GRACE-DSI shows potential for globally consistent and effective drought monitoring, particularly where sparse ground observations (especially precipitation) limit the use of traditional drought monitoring methods.


2021 ◽  
Author(s):  
Sinta Berliana S. ◽  
Indah Susanti ◽  
Bambang Siswanto ◽  
Amalia Nurlatifah ◽  
Hidayatul Latifah ◽  
...  

2010 ◽  
Vol 19 (1) ◽  
pp. 14 ◽  
Author(s):  
Katarzyna Grala ◽  
William H. Cooke

Forests constitute a large percentage of the total land area in Mississippi and are a vital element of the state economy. Although wildfire occurrences have been considerably reduced since the 1920s, there are still ~4000 wildfires each year in Mississippi burning over 24 000 ha (60 000 acres). This study focusses on recent history and various characteristics of Mississippi wildfires to provide better understanding of spatial and temporal characteristics of wildfires in the state. Geographic information systems and Mississippi Forestry Commission wildfire occurrence data were used to examine relationships between climatic and anthropogenic factors, the incidence, burned area, wildfire cause, and socioeconomic factors. The analysis indicated that wildfires are more frequent in southern Mississippi, in counties covered mostly by pine forest, and are most prominent in the winter–spring season. Proximity to roads and cities were two anthropogenic factors that had the most statistically significant correlation with wildfire occurrence and size. In addition, the validity of the Palmer Drought Severity Index as a measure of fire activity was tested for climatic districts in Mississippi. Analysis indicated that drought influences fire numbers and size during summer and fall (autumn). The strongest relationship between the Palmer Drought Severity Index and burned area was found for the southern climatic districts for the summer–fall season.


2021 ◽  
Vol 12 (1) ◽  
pp. 16-29
Author(s):  
Ika Purnamasari ◽  
◽  
Tri Wahyu Saputra ◽  
Suci Ristiyana ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document