scholarly journals Exponential Stability in Mean Square of Singular Markovian Jump System with Saturating Actuators and Time-Varying Delay

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fangqing Ding ◽  
Xianfa Jiao

This paper investigates exponential stability in mean square of singular Markovian jump systems with saturating actuators and time-varying delay. The statistical property of the Markov process is fully used to derive the differential of the function. By using a delay decomposition method, a mode-dependent Lyapunov-Krasovskii function is established. A sufficient condition is proposed for exponential stability in mean square of the system designing the memoryless state feedback. A numerical example shows that the approach proposed is effective.

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Zhengrong Xiang ◽  
Guoxin Chen

The problems of mean-square exponential stability and robustH∞control of switched stochastic systems with time-varying delay are investigated in this paper. Based on the average dwell time method and Gronwall-Bellman inequality, a new mean-square exponential stability criterion of such system is derived in terms of linear matrix inequalities (LMIs). Then,H∞performance is studied and robustH∞controller is designed. Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.


2013 ◽  
Vol 760-762 ◽  
pp. 1742-1747
Author(s):  
Jin Fang Han

This paper is concerned with the mean-square exponential stability analysis problem for a class of stochastic interval cellular neural networks with time-varying delay. By using the stochastic analysis approach, employing Lyapunov function and norm inequalities, several mean-square exponential stability criteria are established in terms of the formula and Razumikhin theorem to guarantee the stochastic interval delayed cellular neural networks to be mean-square exponential stable. Some recent results reported in the literatures are generalized. A kind of equivalent description for this stochastic interval cellular neural networks with time-varying delay is also given.


Sign in / Sign up

Export Citation Format

Share Document