scholarly journals Some Improved Ratio, Product, and Regression Estimators of Finite Population Mean When Using Minimum and Maximum Values

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Manzoor Khan ◽  
Javid Shabbir

Efficient estimation of finite population mean is carried out by using the auxiliary information meaningfully. In this paper we have suggested some modified ratio, product, and regression type estimators when using minimum and maximum values. Expressions for biases and mean squared errors of the suggested estimators have been derived up to the first order of approximation. The performances of the suggested estimators, relative to their usual counterparts, have been studied, and improved performance has been established. The improvement in efficiency by making use of maximum and minimum values has been verified numerically.

Author(s):  
Waqar Hafeez ◽  
Javid Shabbir ◽  
Muhammad Taqi Shah ◽  
Shakeel Ahmed

Researchers always appreciates estimators of finite population quantities, especially mean, with maximum efficiency for reaching to valid statistical inference.  Apart from ratio, product and regression estimators, exponential estimators are widely considered by survey statisticians. Motivated from the idea of exponential type estimators, in this article, we propose some new estimators utilizing known median of the study variable with mean of auxiliary variable. Theoretical properties of the suggested estimators are studied up to first order of approximation. In addition, an empirical and simulation study the comparison of median based proposed class of estimators with sample mean, ratio and linear regression estimators  are discussed. The results expose that the proposed estimators are more efficient than the existing estimators.


2021 ◽  
Vol 6 (12) ◽  
pp. 13592-13607
Author(s):  
Xuechen Liu ◽  
◽  
Muhammad Arslan ◽  

<abstract><p>This article deals with estimation of finite population mean using the auxiliary proportion under simple and two phase sampling scheme utilizing two auxiliary variables. Mathematical expressions for the mean squared errors of the proposed estimators are derived under first order of approximation. We compare the proposed class of estimators "theoretically and numerically" with the usual mean estimator of Naik and Gupta <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>. The theoretical as well as numerical findings support the superiority of our proposed class of estimator as compared to estimators available in literature.</p></abstract>


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mursala Khan ◽  
Rajesh Singh

A chain ratio-type estimator is proposed for the estimation of finite population mean under systematic sampling scheme using two auxiliary variables. The mean square error of the proposed estimator is derived up to the first order of approximation and is compared with other relevant existing estimators. To illustrate the performances of the different estimators in comparison with the usual simple estimator, we have taken a real data set from the literature of survey sampling.


2020 ◽  
Vol 16 (1) ◽  
pp. 61-75
Author(s):  
S. Baghel ◽  
S. K. Yadav

AbstractThe present paper provides a remedy for improved estimation of population mean of a study variable, using the information related to an auxiliary variable in the situations under Simple Random Sampling Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are derived upto the first order of approximation. The least value of the MSE for the suggested class of estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been compared with the considered existing competing estimators both theoretically and empirically. The theoretical conditions for the increased efficiency of the proposed class, compared to the competing estimators, is verified using a natural population.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


Sign in / Sign up

Export Citation Format

Share Document