scholarly journals Fractional Partial Differential Equation: Fractional Total Variation and Fractional Steepest Descent Approach-Based Multiscale Denoising Model for Texture Image

2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Yi-Fei Pu ◽  
Ji-Liu Zhou ◽  
Patrick Siarry ◽  
Ni Zhang ◽  
Yi-Guang Liu

The traditional integer-order partial differential equation-based image denoising approaches often blur the edge and complex texture detail; thus, their denoising effects for texture image are not very good. To solve the problem, a fractional partial differential equation-based denoising model for texture image is proposed, which applies a novel mathematical method—fractional calculus to image processing from the view of system evolution. We know from previous studies that fractional-order calculus has some unique properties comparing to integer-order differential calculus that it can nonlinearly enhance complex texture detail during the digital image processing. The goal of the proposed model is to overcome the problems mentioned above by using the properties of fractional differential calculus. It extended traditional integer-order equation to a fractional order and proposed the fractional Green’s formula and the fractional Euler-Lagrange formula for two-dimensional image processing, and then a fractional partial differential equation based denoising model was proposed. The experimental results prove that the abilities of the proposed denoising model to preserve the high-frequency edge and complex texture information are obviously superior to those of traditional integral based algorithms, especially for texture detail rich images.

2014 ◽  
Vol 57 (7) ◽  
pp. 1-19 ◽  
Author(s):  
YiFei Pu ◽  
Patrick Siarry ◽  
JiLiu Zhou ◽  
YiGuang Liu ◽  
Ni Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Asif Iqbal Ali ◽  
Muhammad Kalim ◽  
Adnan Khan

In this paper, we are presenting our work where the noninteger order partial differential equation is studied analytically and numerically using the noninteger power series technique, proposed to solve a noninteger differential equation. We are familiar with a coupled system of the nonlinear partial differential equation (NLPDE). Noninteger derivatives are considered in the Caputo operator. The fractional-order power series technique for finding the nonlinear fractional-order partial differential equation is found to be relatively simple in implementation with an application of the direct power series method. We obtained the solution of nonlinear dispersive equations which are used in electromagnetic and optics signal transformation. The proposed approach of using the noninteger power series technique appears to have a good chance of lowering the computational cost of solving such problems significantly. How to paradigm an initial representation plays an important role in the subsequent process, and a few examples are provided to clarify the initial solution collection.


Sign in / Sign up

Export Citation Format

Share Document