scholarly journals Bounds for the Largest Laplacian Eigenvalue of Weighted Graphs

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sezer Sorgun

Let be weighted graphs, as the graphs where the edge weights are positive definite matrices. The Laplacian eigenvalues of a graph are the eigenvalues of Laplacian matrix of a graph . We obtain two upper bounds for the largest Laplacian eigenvalue of weighted graphs and we compare these bounds with previously known bounds.

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Houqing Zhou ◽  
Youzhuan Xu

The spectrum of the Laplacian matrix of a network plays a key role in a wide range of dynamical problems associated with the network, from transient stability analysis of power network to distributed control of formations. LetG=(V,E)be a simple connected graph onnvertices and letμ(G)be the largest Laplacian eigenvalue (i.e., the spectral radius) ofG. In this paper, by using the Cauchy-Schwarz inequality, we show that the upper bounds for the Laplacian spectral radius ofG.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1902
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Balanced signed graphs appear in the context of social groups with symmetric relations between individuals where a positive edge represents friendship and a negative edge represents enmities between the individuals. The frustration number f of a signed graph is the size of the minimal set F of vertices whose removal results in a balanced signed graph; hence, a connected signed graph G˙ is balanced if and only if f=0. In this paper, we consider the balance of G˙ via the relationships between the frustration number and eigenvalues of the symmetric Laplacian matrix associated with G˙. It is known that a signed graph is balanced if and only if its least Laplacian eigenvalue μn is zero. We consider the inequalities that involve certain Laplacian eigenvalues, the frustration number f and some related invariants such as the cut size of F and its average vertex degree. In particular, we consider the interplay between μn and f.


2021 ◽  
Vol 54 ◽  
Author(s):  
Shariefuddin Pirzada ◽  
Saleem Khan

Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.


2015 ◽  
Vol 26 (03) ◽  
pp. 367-380 ◽  
Author(s):  
Xingqin Qi ◽  
Edgar Fuller ◽  
Rong Luo ◽  
Guodong Guo ◽  
Cunquan Zhang

In spectral graph theory, the Laplacian energy of undirected graphs has been studied extensively. However, there has been little work yet for digraphs. Recently, Perera and Mizoguchi (2010) introduced the directed Laplacian matrix [Formula: see text] and directed Laplacian energy [Formula: see text] using the second spectral moment of [Formula: see text] for a digraph [Formula: see text] with [Formula: see text] vertices, where [Formula: see text] is the diagonal out-degree matrix, and [Formula: see text] with [Formula: see text] whenever there is an arc [Formula: see text] from the vertex [Formula: see text] to the vertex [Formula: see text] and 0 otherwise. They studied the directed Laplacian energies of two special families of digraphs (simple digraphs and symmetric digraphs). In this paper, we extend the study of Laplacian energy for digraphs which allow both simple and symmetric arcs. We present lower and upper bounds for the Laplacian energy for such digraphs and also characterize the extremal graphs that attain the lower and upper bounds. We also present a polynomial algorithm to find an optimal orientation of a simple undirected graph such that the resulting oriented graph has the minimum Laplacian energy among all orientations. This solves an open problem proposed by Perera and Mizoguchi at 2010.


Sign in / Sign up

Export Citation Format

Share Document