scholarly journals Sharp Upper Bounds for the Laplacian Spectral Radius of Graphs

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Houqing Zhou ◽  
Youzhuan Xu

The spectrum of the Laplacian matrix of a network plays a key role in a wide range of dynamical problems associated with the network, from transient stability analysis of power network to distributed control of formations. LetG=(V,E)be a simple connected graph onnvertices and letμ(G)be the largest Laplacian eigenvalue (i.e., the spectral radius) ofG. In this paper, by using the Cauchy-Schwarz inequality, we show that the upper bounds for the Laplacian spectral radius ofG.

2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2019 ◽  
Vol 35 (1) ◽  
pp. 31-40 ◽  
Author(s):  
BILAL A. CHAT ◽  
◽  
HILAL A. GANIE ◽  
S. PIRZADA ◽  
◽  
...  

We consider the skew Laplacian matrix of a digraph −→G obtained by giving an arbitrary direction to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of various parameters associated with the structure of the digraph −→G and characterize the extremal graphs.


2014 ◽  
Vol 06 (02) ◽  
pp. 1450029 ◽  
Author(s):  
YU-PEI HUANG ◽  
CHIH-WEN WENG

In a simple connected graph, the average 2-degree of a vertex is the average degree of its neighbors. With the average 2-degree sequence and the maximum degree ratio of adjacent vertices, we present a sharp upper bound of the spectral radius of the adjacency matrix of a graph, which improves a result in [Y. H. Chen, R. Y. Pan and X. D. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Math. Algorithms Appl.3(2) (2011) 185–191].


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Tianfei Wang ◽  
Liping Jia ◽  
Feng Sun

The Laplacian spectra are the eigenvalues of Laplacian matrixL(G)=D(G)-A(G), whereD(G)andA(G)are the diagonal matrix of vertex degrees and the adjacency matrix of a graphG, respectively, and the spectral radius of a graphGis the largest eigenvalue ofA(G). The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2013 ◽  
Vol 219 (10) ◽  
pp. 5025-5032 ◽  
Author(s):  
A. Dilek (Güngör) Maden ◽  
Kinkar Ch. Das ◽  
A. Sinan Çevik

Sign in / Sign up

Export Citation Format

Share Document