scholarly journals Inequalities for Laplacian Eigenvalues of Signed Graphs with Given Frustration Number

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1902
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Balanced signed graphs appear in the context of social groups with symmetric relations between individuals where a positive edge represents friendship and a negative edge represents enmities between the individuals. The frustration number f of a signed graph is the size of the minimal set F of vertices whose removal results in a balanced signed graph; hence, a connected signed graph G˙ is balanced if and only if f=0. In this paper, we consider the balance of G˙ via the relationships between the frustration number and eigenvalues of the symmetric Laplacian matrix associated with G˙. It is known that a signed graph is balanced if and only if its least Laplacian eigenvalue μn is zero. We consider the inequalities that involve certain Laplacian eigenvalues, the frustration number f and some related invariants such as the cut size of F and its average vertex degree. In particular, we consider the interplay between μn and f.

2020 ◽  
Vol 36 (36) ◽  
pp. 390-399
Author(s):  
Qiao Guo ◽  
Yaoping Hou ◽  
Deqiong Li

Let $\Gamma=(G,\sigma)$ be a signed graph and $L(\Gamma)=D(G)-A(\Gamma)$ be the Laplacian matrix of $\Gamma$, where $D(G)$ is the diagonal matrix of vertex degrees of the underlying graph $G$ and $A(\Gamma)$ is the adjacency matrix of $\Gamma$. It is well-known that the least Laplacian eigenvalue $\lambda_n$ is positive if and only if $\Gamma$ is unbalanced. In this paper, the unique signed graph (up to switching equivalence) which minimizes the least Laplacian eigenvalue among unbalanced connected signed unicyclic graphs with $n$ vertices and $k$ pendant vertices is characterized.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qingyun Tao ◽  
Lixin Tao

The Laplacian energy of a signed graph is defined as the sum of the distance of its Laplacian eigenvalues from its average degree. Two signed graphs of the same order are said to be Laplacian equienergetic if their Laplacian energies are equal. In this paper, we present several infinite families of Laplacian equienergetic signed graphs.


2012 ◽  
Vol 11 (4) ◽  
pp. 1-14
Author(s):  
Deepa Sinha ◽  
Ayushi Dhama

A signed graph (or sigraph in short) is an ordered pair S = (Su, σ), where Su is a graph G = (V, E), called the underlying graph of S and σ : E → {+1, −1} is a function from the edge set E of Su into the set {+1, −1}, called the signature of S. A sigraph S is sign-compatible if there exists a marking µ of its vertices such that the end vertices of every negative edge receive ‘−1’ marks in µ and no positive edge does so. In this paper, we characterize S such that its ×-line sigraphs, semi-total line sigraphs, semi-total point sigraphs and total sigraphs are sign-compatible.


2021 ◽  
Vol 37 ◽  
pp. 163-176
Author(s):  
Yaoping Hou ◽  
Dijian Wang

A (signed) graph is called Laplacian integral if all eigenvalues of its Laplacian matrix are integers. In this paper, we determine all connected Laplacian integral signed graphs of maximum degree 3; among these signed graphs,there are two classes of Laplacian integral signed graphs, one contains 4 infinite families of signed graphs and another contains 29 individual signed graphs.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Deepa Sinha ◽  
Deepakshi Sharma

A signed graph is a simple graph where each edge receives a sign positive or negative. Such graphs are mainly used in social sciences where individuals represent vertices friendly relation between them as a positive edge and enmity as a negative edge. In signed graphs, we define these relationships (edges) as of friendship (“+” edge) or hostility (“-” edge). A 2-path product signed graph S#^S of a signed graph S is defined as follows: the vertex set is the same as S and two vertices are adjacent if and only if there exists a path of length two between them in S. The sign of an edge is the product of marks of vertices in S where the mark of vertex u in S is the product of signs of all edges incident to the vertex. In this paper, we give a characterization of 2-path product signed graphs. Also, some other properties such as sign-compatibility and canonically-sign-compatibility of 2-path product signed graphs are discussed along with isomorphism and switching equivalence of this signed graph with 2-path signed graph.


2019 ◽  
Vol 7 (1) ◽  
pp. 327-342
Author(s):  
K. Hassani Monfared ◽  
G. MacGillivray ◽  
D. D. Olesky ◽  
P. van den Driessche

Abstract We study the sets of inertias achieved by Laplacian matrices of weighted signed graphs. First we characterize signed graphs with a unique Laplacian inertia. Then we show that there is a sufficiently small perturbation of the nonzero weights on the edges of any connected weighted signed graph so that all eigenvalues of its Laplacian matrix are simple. Next, we give upper bounds on the number of possible Laplacian inertias for signed graphs with a fixed flexibility τ (a combinatorial parameter of signed graphs), and show that these bounds are sharp for an infinite family of signed graphs. Finally, we provide upper bounds for the number of possible Laplacian inertias of signed graphs in terms of the number of vertices.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sezer Sorgun

Let be weighted graphs, as the graphs where the edge weights are positive definite matrices. The Laplacian eigenvalues of a graph are the eigenvalues of Laplacian matrix of a graph . We obtain two upper bounds for the largest Laplacian eigenvalue of weighted graphs and we compare these bounds with previously known bounds.


10.37236/8478 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Clément Charpentier ◽  
Reza Naserasr ◽  
Éric Sopena

The notion of homomorphism of signed graphs, introduced quite recently, provides better interplay with the notion of minor and is thus of high importance in graph coloring. A newer, but equivalent, definition of homomorphisms of signed graphs, proposed jointly by the second and third authors of this paper and Thomas Zaslavsky, leads to a basic no-homomorphism lemma. According to this definition, a signed graph $(G, \sigma)$ admits a homomorphism to a signed graph $(H, \pi)$ if there is a mapping $\phi$ from the vertices and edges of $G$ to the vertices and edges of $H$ (respectively) which preserves adjacencies, incidences, and signs of closed walks (i.e., the product of the sign of their edges).  For $ij=00, 01, 10, 11$, let $g_{ij}(G,\sigma)$ be the length of a shortest nontrivial closed walk of $(G, \sigma)$ which is, positive and of even length for $ij=00$, positive and of odd length for $ij=01$, negative and of even length for $ij=10$, negative and of odd length for $ij=11$. For each $ij$, if there is no nontrivial closed walk of the corresponding type, we let $g_{ij}(G, \sigma)=\infty$. If $G$ is bipartite, then $g_{01}(G,\sigma)=g_{11}(G,\sigma)=\infty$. In this case, $g_{10}(G,\sigma)$ is certainly realized by a cycle of $G$, and it will be referred to as the \emph{unbalanced-girth} of $(G,\sigma)$. It then follows that if $(G,\sigma)$ admits a homomorphism to $(H, \pi)$, then $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for $ij \in \{00, 01,10,11\}$. Studying the restriction of homomorphisms of signed graphs on sparse families, in this paper we first prove that for any given signed graph $(H, \pi)$, there exists a positive value of $\epsilon$ such that, if $G$ is a connected graph of maximum average degree less than $2+\epsilon$, and if $\sigma$ is a signature of $G$ such that $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for all $ij \in \{00, 01,10,11\}$, then $(G, \sigma)$ admits a homomorphism to $(H, \pi)$. For $(H, \pi)$ being the signed graph on $K_4$ with exactly one negative edge, we show that $\epsilon=\frac{4}{7}$ works and that this is the best possible value of $\epsilon$. For $(H, \pi)$ being the negative cycle of length $2g$, denoted $UC_{2g}$, we show that $\epsilon=\frac{1}{2g-1}$ works.  As a bipartite analogue of the Jaeger-Zhang conjecture, Naserasr, Sopena and Rollovà conjectured in [Homomorphisms of signed graphs, {\em J. Graph Theory} 79 (2015)] that every signed bipartite planar graph $(G,\sigma)$ satisfying $g_{ij}(G,\sigma)\geq 4g-2$ admits a homomorphism to $UC_{2g}$. We show that $4g-2$ cannot be strengthened, and, supporting the conjecture, we prove it for planar signed bipartite graphs $(G,\sigma)$ satisfying the weaker condition $g_{ij}(G,\sigma)\geq 8g-2$. In the course of our work, we also provide a duality theorem to decide whether a 2-edge-colored graph admits a homomorphism to a certain class of 2-edge-colored signed graphs or not.


2015 ◽  
Vol 64 (9) ◽  
pp. 1785-1799 ◽  
Author(s):  
Francesco Belardo ◽  
Paweł Petecki ◽  
Jianfeng Wang

Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


Sign in / Sign up

Export Citation Format

Share Document