scholarly journals Study of Microwave Tomography Measurement Setup Configurations for Breast Cancer Detection Based on Breast Compression

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Alvaro Diaz-Bolado ◽  
Paul-Andre Barriere ◽  
Jean-Jacques Laurin

Microwave tomography (MT) measurement setups for different configurations based on breast compression are compared to classical circular measurement setups. Configurations based on compression allow measuring the evanescent component of the scattered field and lead to a compact measurement setup that allows direct image comparison with a standard mammography system. The different configurations are compared based on the singular value decomposition (SVD) of the radiation operator for a 2D TM case. This analysis allows determining under which conditions the image quality obtained from the reconstructions can be enhanced. These findings are confirmed by a series of reconstructions of breast phantoms based on synthetic data obtained at a single frequency of operation.

Author(s):  
Saifullah Harith Suradi ◽  
Kamarul Amin Abdullah

Background: Digital mammograms with appropriate image enhancement techniques will improve breast cancer detection, and thus increase the survival rates. The objectives of this study were to systematically review and compare various image enhancement techniques in digital mammograms for breast cancer detection. Methods: A literature search was conducted with the use of three online databases namely, Web of Science, Scopus, and ScienceDirect. Developed keywords strategy was used to include only the relevant articles. A Population Intervention Comparison Outcomes (PICO) strategy was used to develop the inclusion and exclusion criteria. Image quality was analyzed quantitatively based on peak signal-noise-ratio (PSNR), Mean Squared Error (MSE), Absolute Mean Brightness Error (AMBE), Entropy, and Contrast Improvement Index (CII) values. Results: Nine studies with four types of image enhancement techniques were included in this study. Two studies used histogram-based, three studies used frequency-based, one study used fuzzy-based and three studies used filter-based. All studies reported PSNR values whilst only four studies reported MSE, AMBE, Entropy and CII values. Filter-based was the highest PSNR values of 78.93, among other types. For MSE, AMBE, Entropy, and CII values, the highest were frequency-based (7.79), fuzzy-based (93.76), filter-based (7.92), and frequency-based (6.54) respectively. Conclusion: In summary, image quality for each image enhancement technique is varied, especially for breast cancer detection. In this study, the frequency-based of Fast Discrete Curvelet Transform (FDCT) via the UnequiSpaced Fast Fourier Transform (USFFT) shows the most superior among other image enhancement techniques.


2020 ◽  
Vol 31 (1) ◽  
pp. 356-367
Author(s):  
Isaac Daimiel Naranjo ◽  
Roberto Lo Gullo ◽  
Carolina Saccarelli ◽  
Sunitha B. Thakur ◽  
Almir Bitencourt ◽  
...  

Abstract Objectives To assess DWI for tumor visibility and breast cancer detection by the addition of different synthetic b-values. Methods Eighty-four consecutive women who underwent a breast-multiparametric-MRI (mpMRI) with enhancing lesions on DCE-MRI (BI-RADS 2–5) were included in this IRB-approved retrospective study from September 2018 to March 2019. Three readers evaluated DW acquired b-800 and synthetic b-1000, b-1200, b-1500, and b-1800 s/mm2 images for lesion visibility and preferred b-value based on lesion conspicuity. Image quality (1–3 scores) and breast composition (BI-RADS) were also recorded. Diagnostic parameters for DWI were determined using a 1–5 malignancy score based on qualitative imaging parameters (acquired + preferred synthetic b-values) and ADC values. BI-RADS classification was used for DCE-MRI and quantitative ADC values + BI-RADS were used for mpMRI. Results Sixty-four malignant (average = 23 mm) and 39 benign (average = 8 mm) lesions were found in 80 women. Although b-800 achieved the best image quality score, synthetic b-values 1200–1500 s/mm2 were preferred for lesion conspicuity, especially in dense breast. b-800 and synthetic b-1000/b-1200 s/mm2 values allowed the visualization of 84–90% of cancers visible with DCE-MRI performing better than b-1500/b-1800 s/mm2. DWI was more specific (86.3% vs 65.7%, p < 0.001) but less sensitive (62.8% vs 90%, p < 0.001) and accurate (71% vs 80.7%, p = 0.003) than DCE-MRI for breast cancer detection, where mpMRI was the most accurate modality accounting for less false positive cases. Conclusion The addition of synthetic b-values enhances tumor conspicuity and could potentially improve tumor visualization particularly in dense breast. However, its supportive role for DWI breast cancer detection is still not definite. Key Points • The addition of synthetic b-values (1200–1500 s/mm2) to acquired DWI afforded a better lesion conspicuity without increasing acquisition time and was particularly useful in dense breasts. • Despite the use of synthetic b-values, DWI was less sensitive and accurate than DCE-MRI for breast cancer detection. • A multiparametric MRI modality still remains the best approach having the highest accuracy for breast cancer detection and thus reducing the number of unnecessary biopsies.


2020 ◽  
Vol 16 (2) ◽  
pp. 124-128 ◽  
Author(s):  
Anand K. Narayan ◽  
◽  
Huda Al-Naemi ◽  
Antar Aly ◽  
Mohammad Hassan Kharita ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 19-26
Author(s):  
Ki-Chul Kwon ◽  
Kwan-Hee Yoo ◽  
Nam Kim ◽  
Seong-Ho Son ◽  
Soon-Ik Jeon

Sign in / Sign up

Export Citation Format

Share Document