scholarly journals Design of Polynomial Fuzzy Radial Basis Function Neural Networks Based on Nonsymmetric Fuzzy Clustering and Parallel Optimization

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Wei Huang ◽  
Jinsong Wang

We first propose a Parallel Space Search Algorithm (PSSA) and then introduce a design of Polynomial Fuzzy Radial Basis Function Neural Networks (PFRBFNN) based on Nonsymmetric Fuzzy Clustering Method (NSFCM) and PSSA. The PSSA is a parallel optimization algorithm realized by using Hierarchical Fair Competition strategy. NSFCM is essentially an improved fuzzy clustering method, and the good performance in the design of “conventional” Radial Basis Function Neural Networks (RBFNN) has been proven. In the design of PFRBFNN, NSFCM is used to design the premise part of PFRBFNN, while the consequence part is realized by means of weighted least square (WLS) method. Furthermore, HFC-PSSA is exploited here to optimize the proposed neural network. Experimental results demonstrate that the proposed neural network leads to better performance in comparison to some existing neurofuzzy models encountered in the literature.

2015 ◽  
Vol 761 ◽  
pp. 120-124
Author(s):  
K.A.A. Aziz ◽  
Abdul Kadir ◽  
Rostam Affendi Hamzah ◽  
Amat Amir Basari

This paper presents a product identification using image processing and radial basis function neural networks. The system identified a specific product based on the shape of the product. An image processing had been applied to the acquired image and the product was recognized using the Radial Basis Function Neural Network (RBFNN). The RBF Neural Networks offer several advantages compared to other neural network architecture such as they can be trained using a fast two-stage training algorithm and the network possesses the property of best approximation. The output of the network can be optimized by setting suitable values of the center and the spread of RBF. In this paper, fixed spread value was used for every cluster. The system can detect all the four products with 100% successful rate using ±0.2 tolerance.


2018 ◽  
Vol 31 (2) ◽  
pp. 210
Author(s):  
Laith Jasim Saud ◽  
Zainab Kudair Abass

       Human detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two types of neural networks are used to classify the extracted objects. Tests have been performed on a sequence of frames, and the simulation results by MATLAB showed that the RBF neural network gave a better performance compared with the MLP neural network where the RBF model gave a mean squared error (MSE) equals to 2.36811e-18 against MSE equals to 2.6937e-11 achieved by the MLP model. The more important thing observed is that the RBF approach required less time to classify the detected object as human compared to the MLP, where the RBF took approximately 86.2% lesser time to give the decision.


Sign in / Sign up

Export Citation Format

Share Document