scholarly journals Variational Approximate Solutions of Fractional Nonlinear Nonhomogeneous Equations with Laplace Transform

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yanqin Liu ◽  
Fengsheng Xu ◽  
Xiuling Yin

A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily handled by the use of He’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples and the methodology is demonstrated.

2008 ◽  
Vol 22 (23) ◽  
pp. 4041-4058 ◽  
Author(s):  
ZAID ODIBAT ◽  
SHAHER MOMANI

Comparison of homotopy perturbation method (HPM) and variational iteration method (VIM) is made, revealing that the two methods can be used as alternative and equivalent methods for obtaining analytic and approximate solutions for different types of differential equations of fractional order. Furthermore, the former is more general and powerful than the latter. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

Variational iteration method and homotopy perturbation method are used to solve the fractional Fredholm integrodifferential equations with constant coefficients. The obtained results indicate that the method is efficient and also accurate.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yanqin Liu

A variational homotopy perturbation method (VHPM) which is based on variational iteration method and homotopy perturbation method is applied to solve the approximate solution of the fractional initial boundary value problems. The nonlinear terms can be easily handled by the use of He's polynomials. It is observed that the variational iteration method is very efficient and easier to implements; illustrative examples are included to demonstrate the high accuracy and fast convergence of this new algorithm.


Sign in / Sign up

Export Citation Format

Share Document