scholarly journals Dynamic Optimization Model and Algorithm Design for Emergency Materials Dispatch

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bingbing Dan ◽  
Wanhong Zhu ◽  
Huabing Li ◽  
Yangyang Sang ◽  
Yan Liu

Emergency materials dispatch (EMD) is a typical dynamic vehicle routing problem (DVRP) and it concentrates on process strategy solving, which is different from the traditional static vehicle routing problem. Based on the characteristics of emergency materials dispatch, DVRP changed the EMD into a series of static problems in time axis. A mathematical multiobjective model is established, and the corresponding improved ant colony optimization algorithm is designed to solve the problem. Finally, a numeric example is provided to demonstrate the validity and feasibility of this proposed model and algorithm.

2021 ◽  
Vol 15 (3) ◽  
pp. 429-434
Author(s):  
Luka Olivari ◽  
Goran Đukić

Dynamic Vehicle Routing Problem is a more complex version of Vehicle Routing Problem, closer to the present, real-world problems. Heuristic methods are used to solve the problem as Vehicle Routing Problem is NP-hard. Among many different solution methods, the Ant Colony Optimization algorithm is proven to be the efficient solution when dealing with the dynamic version of the problem. Even though this problem is known to the scientific community for decades, the field is extremely active due to technological advancements and the current relevance of the problem. As various sub-types of routing problems and solution methods exist, there is a great number of possible problem-solution combinations and research directions. This paper aims to make a focused review of the current state in the field of Dynamic Vehicle Routing Problems solved by Ant Colony Optimization algorithm, to establish current trends in the field.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shifeng Chen ◽  
Rong Chen ◽  
Jian Gao

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem. It is usually modelled in a static fashion; however, in practice, new requests by customers arrive after the initial workday plan is in progress. In this case, routes must be replanned dynamically. This paper investigates the Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) in which customers’ requests either can be known at the beginning of working day or occur dynamically over time. We propose a hybrid heuristic algorithm that combines the harmony search (HS) algorithm and the Variable Neighbourhood Descent (VND) algorithm. It uses the HS to provide global exploration capabilities and uses the VND for its local search capability. In order to prevent premature convergence of the solution, we evaluate the population diversity by using entropy. Computational results on the Lackner benchmark problems show that the proposed algorithm is competitive with the best existing algorithms from the literature.


2014 ◽  
Vol 931-932 ◽  
pp. 578-582
Author(s):  
Sunarin Chanta ◽  
Ornurai Sangsawang

In this paper, we proposed an optimization model that addresses the evacuation routing problem for flood disaster when evacuees trying to move from affected areas to safe places using public transportation. A focus is on the situation of evacuating during high water level when special high vehicles are needed. The objective is to minimize the total traveled distance through evacuation periods where a limited number of vehicles is given. We formulated the problem as a mixed integer programming model based on the capacitated vehicle routing problem with multiple evcuation periods where demand changing by the time. The proposed model has been tested on a real-world case study affected by the severe flooding in Thailand, 2011.


Sign in / Sign up

Export Citation Format

Share Document