scholarly journals Computational Solution of a Fractional Integro-Differential Equation

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Muhammet Kurulay ◽  
Mehmet Ali Akinlar ◽  
Ranis Ibragimov

Although differential transform method (DTM) is a highly efficient technique in the approximate analytical solutions of fractional differential equations, applicability of this method to the system of fractional integro-differential equations in higher dimensions has not been studied in detail in the literature. The major goal of this paper is to investigate the applicability of this method to the system of two-dimensional fractional integral equations, in particular to the two-dimensional fractional integro-Volterra equations. We deal with two different types of systems of fractional integral equations having some initial conditions. Computational results indicate that the results obtained by DTM are quite close to the exact solutions, which proves the power of DTM in the solutions of these sorts of systems of fractional integral equations.

2018 ◽  
Vol 21 (1) ◽  
pp. 174-189 ◽  
Author(s):  
Daniel Cao Labora ◽  
Rosana Rodríguez-López

Abstract In this work, we apply and extend our ideas presented in [4] for solving fractional integral equations with Riemann-Liouville definition. The approach made in [4] turned any linear fractional integral equation with constant coefficients and rational orders into a similar one, but with integer orders. If the right hand side was smooth enough we could differentiate at both sides to arrive to a linear ODE with constant coefficients and some initial conditions, that can be solved via an standard procedure. In this procedure, there were two major obstacles that did not allow to obtain a full result. These were the assumptions over the smoothness of the source term and the assumption about the rationality of the orders. So, one of the main topics of this document is to describe a modification of the procedure presented in [4], when the source term is not smooth enough to differentiate the required amount of times. Furthermore, we will also study the fractional integral equations with non-rational orders by a limit process of fractional integral equations with rational orders. Finally, we will connect the previous material with some fractional differential equations with Caputo derivatives described in [7]. For instance, we will deal with the fractional oscillation equation, the fractional relaxation equation and, specially, its particular case of the Basset problem. We also expose how to compute these solutions for the Riemann-Liouville case.


Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1093
Author(s):  
Daniel Cao Labora

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Alemayehu Tamirie Deresse ◽  
Yesuf Obsie Mussa ◽  
Ademe Kebede Gizaw

In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear sine-Gordon equations subject to appropriate initial conditions. Some lemmas which help us to solve the governing problem using the proposed method are proved. This scheme has the advantage of generating an analytical approximate solution or exact solution in a convergent power series form with conveniently determinable components. The method considers the use of the appropriate initial conditions and finds the solution without any discretization, transformation, or restrictive assumptions. The accuracy and efficiency of the proposed method are demonstrated by four of our test problems, and solution behavior of the test problems is presented using tables and graphs. Further, the numerical results are found to be in a good agreement with the exact solutions and the numerical solutions that are available in literature. We have showed the convergence of the proposed method. Also, the obtained results reveal that the introduced method is promising for solving other types of nonlinear partial differential equations (NLPDEs) in the fields of science and engineering.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 517
Author(s):  
Jin Liang ◽  
Yunyi Mu

In this paper, we are concerned with the ψ-fractional integrals, which is a generalization of the well-known Riemann–Liouville fractional integrals and the Hadamard fractional integrals, and are useful in the study of various fractional integral equations, fractional differential equations, and fractional integrodifferential equations. Our main goal is to present some new properties for ψ-fractional integrals involving a general function ψ by establishing several new equalities for the ψ-fractional integrals. We also give two applications of our new equalities.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wayinhareg Gashaw Belayeh ◽  
Yesuf Obsie Mussa ◽  
Ademe Kebede Gizaw

In this paper, the reduced differential transform method (RDTM) is successfully implemented for solving two-dimensional nonlinear Klein–Gordon equations (NLKGEs) with quadratic and cubic nonlinearities subject to appropriate initial conditions. The proposed technique has the advantage of producing an analytical approximation in a convergent power series form with a reduced number of calculable terms. Two test examples from mathematical physics are discussed to illustrate the validity and efficiency of the method. In addition, numerical solutions of the test examples are presented graphically to show the reliability and accuracy of the method. Also, the results indicate that the introduced method is promising for solving other type systems of NLPDEs.


Sign in / Sign up

Export Citation Format

Share Document