scholarly journals Sliding Mode Control Design for a Class of SISO Systems with Uncertain Sliding Surface

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Guofeng Wang ◽  
Kai Zheng ◽  
Xingcheng Wang ◽  
Shuanghe Yu

The problem of designing a sliding mode controller with uncertain sliding surface for a class of uncertain single-input-single-output systems is studied. The design case is handled by using the invariant transformation first in order to separate the sliding mode and the reaching mode of the sliding mode control system. It is shown that the sliding mode design needs not to consider the uncertainties of the sliding surface, which can be handled in the reaching phase design. The results generalize the robust design of the reaching phase such that one specific reaching phase design may agree with several sliding surfaces.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Assil Ayadi ◽  
Soufien Hajji ◽  
Mohamed Smaoui ◽  
Abdessattar Chaari

This paper aims to propose and develop an adaptive moving sliding mode controller (AMSMC) that can be applied for nonlinear single-input single-output (SISO) systems with external disturbances. The main contribution of this framework consists to overcome the chattering phenomenon problem. The discontinuous term of the classic sliding mode control is replaced by an adaptive term. Moreover, a moving sliding surface is proposed to have better tracking and to guarantee robustness to the external disturbances. The parameters of the sliding surface and the adaptive law are deduced based on Lyapunov stability analysis. An experimental application of electropneumatic system is treated to validate the theoretical results.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Sign in / Sign up

Export Citation Format

Share Document