scholarly journals The Interval-Valued Intuitionistic Fuzzy Optimized Weighted Bonferroni Means and Their Application

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ming Shi ◽  
Jian-min He

We investigate and propose two new Bonferroni means, that is, the optimized weighted BM (OWBM) and the generalized optimized weighted BM (GOWBM), whose characteristics are to reflect the preference and interrelationship of the aggregated arguments and can satisfy the basic properties of the aggregation techniques simultaneously. Further, we propose the interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (IIFOWBM) and the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (GIIFOWBM) and detailed study of their desirable properties such as idempotency, monotonicity, transformation, and boundary. Finally, based on IIFOWBM and GIIFOWBM, we give an approach to group decision making under the interval-valued intuitionistic fuzzy environment and utilize a practical case involving the assessment of a set of agroecological regions in Hubei Province, China, to illustrate the developed methods.

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision making problem with conflicting criteria and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multicriteria group decision making problem where the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic fuzzy environment.


Author(s):  
Fanyong Meng ◽  
Chunqiao Tan

As an extension of the classical averaging operators, Choquet integral has been shown a powerful tool for decision theory. In this paper, a method based on the generalized interval-valued intuitionistic fuzzy Choquet integrals w.r.t. the generalized interaction indices is proposed for multiattribute group decision making problems, where the importance of the elements is considered, and their interactions are reflected. Based on the given operational laws on interval-valued intuitionistic fuzzy sets, the interval-valued intuitionistic fuzzy Choquet integrals with respect to the generalized Shapley and Banzhaf indices are defined. Moreover, some of their properties are studied, such as idempotency, boundary, comonotonic linearity and μ–linearity. Furthermore, a decision procedure based on the proposed operators is developed for solving multi-attribute group decision making under interval-valued intuitionistic fuzzy environment. Finally, a numerical example is provided to illustrate the developed procedure.


Author(s):  
Yingdong He ◽  
Zhen He ◽  
Chao Jin ◽  
Huayou Chen

The geometric Bonferroni mean (GBM) can capture the interrelationships between input arguments, which is an important generalization of Bonferroni mean (BM). In this paper, we combine geometric Bonferroni mean (GBM) with the power geometric average (PGA) operator under intuitionistic fuzzy environment and present the intuitionistic fuzzy geometric power Bonferroni mean (IFPGBM) and the weighted intuitionistic fuzzy power geometric Bonferroni mean (WIFPGBM). The desirable properties of these new extensions of Bonferroni mean and their special cases are investigated. We list the detailed steps of multiple attribute group decision making with the developed IFPGBM or WIFPGBM, and give a comparison of the new extensions of Bonferroni mean by this paper with the corresponding existing intuitionistic fuzzy Bonferroni means. Finally, examples are illustrated to show the validity and feasibility of the new approaches.


Sign in / Sign up

Export Citation Format

Share Document