scholarly journals Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano Comisso ◽  
Roberto Vescovo

This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR) of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano Comisso ◽  
Giulia Buttazzoni ◽  
Roberto Vescovo

This paper proposes a deterministic method for the 3D synthesis of antenna arrays that jointly accounts for far-field pattern reconfigurability, polarization setting, dynamic range ratio reduction, and near-field control. The conceived algorithm, which generalizes some existing solutions, relies on a weighted cost function, whose iterative minimization is accomplished by properly derived closed-form expressions. This feature, combined with the possibility of selecting the weighting parameters, provides a fast and versatile approach, whose capabilities are numerically checked by considering different synthesis problems and array structures in the presence of mutual coupling.


2009 ◽  
Vol 57 (6) ◽  
pp. 1679-1683 ◽  
Author(s):  
Juan Antonio Rodriguez-Gonzalez ◽  
Francisco Ares-Pena ◽  
Manuel Fernandez-Delgado ◽  
Roberto Iglesias ◽  
SenÉn Barro

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. R. Subhashini ◽  
A. T. Praveen Kumar

Hemispherical antenna arrays are subjected to linear and nonlinear synthesis and are optimized using adaptive based differential evolution (ADE) and fire fly (AFA) algorithm. The hemispherical shaped array with isotropic elements is considered. Antenna element parameters that are used for synthesis are excitation amplitude and angular position. Linear synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solveN-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.


Sign in / Sign up

Export Citation Format

Share Document