scholarly journals A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Xinfan Xia ◽  
Lihua Liu ◽  
Shengbo Ye ◽  
Hongfei Guan ◽  
Guangyou Fang

A novel ultra-wideband (UWB) monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs) and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD) effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductanceLshort-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

Author(s):  
Djalal Ziani Kerarti ◽  
Fatima Zahra Marouf

Background & Objective: In this paper, a simple design of antipodal Vivaldi antenna for ultra-wideband Radar applications is presented. Methods: The antenna provided to operate across the entire UWB spectrum sins it covers a very wide frequency band from 2.43 up to 13 GHz with better return loss characteristics. In addition, the antenna offers high and flat gain in this band. The numerical designs of the antennas have been performed by using the commercially available software CST MW, which it’s printed on Taconic substrate with a dielectric constant of 4.5 and thickness 1.6 mm. Results and Conclusion: The antenna has a compact dimension of 40 × 50 mm2 achieve satisfactory impedance matching and radiation efficiency.


2019 ◽  
Vol 8 (3) ◽  
pp. 76-82
Author(s):  
Y. Ahajjam ◽  
O. Aghzout ◽  
J. M. Catala-Civera ◽  
F. Peñaranda-Foix ◽  
A. Driouach

In This paper, a high power sub-nanosecond pulse transmitter for Ultra-wideband radar sensor is presented. The backbone of the generator is considered as a step recovery diode and unique pulse injected into the circuit, which gives rise to an ultra-wide band Gaussian pulse. The transistor driver and transmission line pulse forming the whole network are investigated in detail.  The main purpose of this work is to transform a square waveform signal to a driving pulse with the timing and the amplitude parameters required by the SRD to form an output Gaussian pulse, and then into high monocycle pulses. In simulation aspect, an improved output response is required, in this way a new model of step recovery diode has been proposed as a sharpener circuit. This proposition was applied to increase the rise-time of the pulses. For a good range radar, a high amplitude pulse is indispensable, especially when it comes to penetrate thick lossy materiel.  In order to overcome this challenge, a simple technique and useful solution is introduced to increase the output amplitude of the transmitter. This technique consists to connect the outputs of two identical pulse generators in parallel respecting the restrictions required. The pulse transmitter circuit is completely fabricated using micro-strip structure technology characteristics. Waveforms of the generated monocycle pulses over 10V in amplitude with 3.5 % in overshoot have been obtained. Good agreement has been achieved between measurement and simulation results.


2013 ◽  
Vol 49 (4) ◽  
pp. 293-295 ◽  
Author(s):  
Xinfan Xia ◽  
Lihua Liu ◽  
Hongfei Guan ◽  
Guangyou Fang

2007 ◽  
Vol 42 (7) ◽  
pp. 1464-1471 ◽  
Author(s):  
A. Oncu ◽  
B.B.M. Wasanthamala Badalawa ◽  
M. Fujishima

Sign in / Sign up

Export Citation Format

Share Document