scholarly journals Subspace Clustering Mutation Operator for Developing Convergent Differential Evolution Algorithm

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Zhongbo Hu ◽  
Shengwu Xiong ◽  
Xiuhua Wang ◽  
Qinghua Su ◽  
Mianfang Liu ◽  
...  

Many researches have identified that differential evolution algorithm (DE) is one of the most powerful stochastic real-parameter algorithms for global optimization problems. However, a stagnation problem still exists in DE variants. In order to overcome the disadvantage, two improvement ideas have gradually appeared recently. One is to combine multiple mutation operators for balancing the exploration and exploitation ability. The other is to develop convergent DE variants in theory for decreasing the occurrence probability of the stagnation. Given that, this paper proposes a subspace clustering mutation operator, called SC_qrtop. Five DE variants, which hold global convergence in probability, are then developed by combining the proposed operator and five mutation operators of DE, respectively. The SC_qrtop randomly selects an elite individual as a perturbation’s center and employs the difference between two randomly generated boundary individuals as a perturbation’s step. Theoretical analyses and numerical simulations demonstrate that SC_qrtop prefers to search in the orthogonal subspace centering on the elite individual. Experimental results on CEC2005 benchmark functions indicate that all five convergent DE variants with SC_qrtop mutation outperform the corresponding DE algorithms.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yongzhao Du ◽  
Yuling Fan ◽  
Xiaofang Liu ◽  
Yanmin Luo ◽  
Jianeng Tang ◽  
...  

A multiscale cooperative differential evolution algorithm is proposed to solve the problems of narrow search range at the early stage and slow convergence at the later stage in the performance of the traditional differential evolution algorithms. Firstly, the population structure of multipopulation mechanism is adopted so that each subpopulation is combined with a corresponding mutation strategy to ensure the individual diversity during evolution. Then, the covariance learning among populations is developed to establish a suitable rotating coordinate system for cross operation. Meanwhile, an adaptive parameter adjustment strategy is introduced to balance the population survey and convergence. Finally, the proposed algorithm is tested on the CEC 2005 benchmark function and compared with other state-of-the-art evolutionary algorithms. The experiment results showed that the proposed algorithm has better performance in solving global optimization problems than other compared algorithms.


Sign in / Sign up

Export Citation Format

Share Document