scholarly journals Existence of Traveling Wave Solutions for Cholera Model

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tianran Zhang ◽  
Qingming Gou ◽  
Xiaoli Wang

To investigate the spreading speed of cholera, Codeço’s cholera model (2001) is developed by a reaction-diffusion model that incorporates both indirect environment-to-human and direct human-to-human transmissions and the pathogen diffusion. The two transmission incidences are supposed to be saturated with infective density and pathogen density. The basic reproduction numberR0is defined and the formula for minimal wave speedc*is given. It is proved by shooting method that there exists a traveling wave solution with speedcfor cholera model if and only ifc≥c*.

1995 ◽  
Vol 05 (07) ◽  
pp. 935-966 ◽  
Author(s):  
YUZO HOSONO ◽  
BILAL ILYAS

We investigate the existence of traveling wave solutions for the infective-susceptible two-component epidemic model. The model system is described by reaction-diffusion equations with the nonlinear reaction term of the classical Kermack-McKendric type. The diffusion coefficients of infectives and susceptibles are assumed to be positive constants d1 and d2 respectively. By the shooting argument with the aid of the invariant manifold theory, we prove that there exists a positive constant c* such that the traveling wave solutions exist for any c≥c*. The minimal wave speed c* is shown to be independent of d2 and to have the same value as that for d2=0.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng Wang ◽  
Wenbin Liu ◽  
Zhengguang Guo ◽  
Weiming Wang

We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 30
Author(s):  
Jeerawan Suksamran ◽  
Yongwimon Lenbury ◽  
Sanoe Koonprasert

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in piglets and growing pigs. The disease rapidly spreads in swine populations, making it a serious problem causing great financial losses to the swine industry. However, past mathematical models used to describe the spread of the disease have not yielded sufficient understanding of its spatial transmission. This work has been designed to investigate a mathematical model for the spread of PRRSV considering both time and spatial dimensions as well as the observed decline in infectiousness as time progresses. Moreover, our model incorporates into the dynamics the assumption that some members of the infected population may recover from the disease and become immune. Analytical solutions are derived by using the modified extended hyperbolic tangent method with the introduction of traveling wave coordinate. We also carry out a stability and phase analysis in order to obtain a clearer understanding of how PRRSV spreads spatially through time.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fuzhen Wu ◽  
Dongfeng Li

This paper is concerned with the minimal wave speed of traveling wave solutions in a predator-prey system with distributed time delay, which does not satisfy comparison principle due to delayed intraspecific terms. By constructing upper and lower solutions, we obtain the existence of traveling wave solutions when the wave speed is the minimal wave speed. Our results complete the known conclusions and show the precisely asymptotic behavior of traveling wave solutions.


2019 ◽  
Vol 12 (07) ◽  
pp. 1950081
Author(s):  
Fuzhen Wu ◽  
Dongfeng Li

This paper is concerned with the minimal wave speed in a diffusive epidemic model with nonlocal delays. We define a threshold. By presenting the existence and the nonexistence of traveling wave solutions for all positive wave speed, we confirm that the threshold is the minimal wave speed of traveling wave solutions, which models that the infective invades the habitat of the susceptible. For some cases, it is proven that spatial nonlocality may increase the propagation threshold while time delay decreases the threshold.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Tianran Zhang ◽  
Qingming Gou

Based on Codeço’s cholera model (2001), an epidemic cholera model that incorporates the pathogen diffusion and disease-related death is proposed. The formula for minimal wave speedc∗is given. To prove the existence of traveling wave solutions, an invariant cone is constructed by upper and lower solutions and Schauder’s fixed point theorem is applied. The nonexistence of traveling wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the prior estimate of exponential decrease of traveling wave solutions is needed. For this aim, a new method is proposed, which can be applied to reaction-diffusion systems consisting of more than three equations.


2015 ◽  
Vol 20 (2) ◽  
pp. 168-187
Author(s):  
Liang Zhang ◽  
Huiyan Zhao

We investigate a stage-structured delayed reaction-diffusion model with advection that describes competition between two mature species in water flow. Time delays are incorporated to measure the time lengths from birth to maturity of the populations. We show there exists a finite positive number c∗ that can be characterized as the slowest spreading speed of traveling wave solutions connecting two mono-culture equilibria or connecting a mono-culture with the coexistence equilibrium. The model and mathematical result in [J.F.M. Al-Omari, S.A. Gourley, Stability and travelling fronts in Lotka–Volterra competition models with stage structure, SIAM J. Appl. Math. 63 (2003) 2063–2086] are generalized.


Author(s):  
Guo Lin ◽  
Yibing Xing

This paper studies the minimal wave speed of traveling wave solutions in predator–prey models, in which there are several groups of predators that compete among different groups. We investigate the existence and nonexistence of traveling wave solutions modeling the invasion of predators and coexistence of these species. When the positive solution of the corresponding kinetic system converges to the unique positive steady state, a threshold that is the minimal wave speed of traveling wave solutions is obtained. To finish the proof, we construct contracting rectangles and upper–lower solutions and apply the asymptotic spreading theory of scalar equations. Moreover, multiple propagation thresholds in the corresponding initial value problem are presented by numerical examples, and one threshold may be the minimal wave speed of traveling wave solutions.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950031
Author(s):  
Fuguo Zhu ◽  
Shuxia Pan

This paper is concerned with the minimal wave speed of traveling wave solutions of a discrete competitive system with Lotka–Volterra type nonlinearity. By constructing upper and lower solutions, we confirm the existence of traveling wave solutions if the wave speed is the minimal wave speed. Our results complete the earlier conclusions.


Sign in / Sign up

Export Citation Format

Share Document