scholarly journals Synchronization and Lag Synchronization of Hyperchaotic Memristor-Based Chua’s Circuits

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junjian Huang ◽  
Chuandong Li ◽  
Tingwen Huang ◽  
Hui Wang ◽  
Xin Wang

A memristor-based five-dimensional (5D) hyperchaotic Chua’s circuit is proposed. Based on the Lyapunov stability theorem, the controllers are designed to realize the synchronization and lag synchronization between the hyperchaotic memristor-based Chua’s circuits under different initial values, respectively. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.

2012 ◽  
Vol 605-607 ◽  
pp. 1972-1975
Author(s):  
Jian Cai Leng ◽  
Rong Wei Guo

Based on the Lyapunov stability theorem, a same controller in the form is designed to achieve the global synchronization and anti-synchronization of the chaotic modified Chua's circuits. The controller obtained in this paper is simpler than those obtained in the existing results, and it is a linear single input controller. Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results


2012 ◽  
Vol 241-244 ◽  
pp. 1067-1070
Author(s):  
Yin Li ◽  
Chun Long Zheng

In this paper, synchronization control method of Zagzag system is discussed both theoretically and numerically. Based on the Lyapunov stability theorem and the chaotic methods, synchronization control is given and illustrated with Zagzag system as example. Numerical simulations are presented to demonstrate the effectiveness of the proposed synchronization scheme.


2008 ◽  
Vol 22 (03) ◽  
pp. 181-190 ◽  
Author(s):  
JUAN MENG ◽  
XINGYUAN WANG

In this paper, the generalized projective synchronization of a class of delayed neural networks is investigated. Based on the Lyapunov stability theorem, a kind of controller is designed. The generalized projective synchronization of delayed neural networks can be achieved by using this kind of controller. Theoretical analysis and numerical simulations are provided to verify the feasibility and effectiveness of the proposed scheme.


2005 ◽  
Vol 15 (02) ◽  
pp. 567-604 ◽  
Author(s):  
SHIHUA LI ◽  
YU-PING TIAN

In this paper, we develop a simple linear feedback controller, which employs only one of the states of the system, to stabilize the modified Chua's circuit to an invariant set which consists of its nontrivial equilibria. Moreover, we show for the first time that the closed loop modified Chua's circuit satisfies set stability which can be considered as a generalization of common Lyapunov stability of an equilibrium point. Simulation results are presented to verify our method.


2014 ◽  
Vol 24 (3) ◽  
pp. 257-270 ◽  
Author(s):  
Bohui Wen ◽  
Mo Zhao ◽  
Fanyu Meng

Abstract This paper investigates the pinning synchronization of two general complex dynamical networks with lag. The coupling configuration matrices in the two networks are not need to be symmetric or irreducible. Several convenient and useful criteria for lag synchronization are obtained based on the lemma of Schur complement and the Lyapunov stability theory. Especially, the minimum number of controllers in pinning control can be easily obtained. At last, numerical simulations are provided to verify the effectiveness of the criteria


2009 ◽  
Vol 19 (11) ◽  
pp. 3813-3822 ◽  
Author(s):  
ABDELKRIM BOUKABOU ◽  
BILEL SAYOUD ◽  
HAMZA BOUMAIZA ◽  
NOURA MANSOURI

This paper addresses the control of unstable fixed points and unstable periodic orbits of the n-scroll Chua's circuit. In a first step, we give necessary and sufficient conditions for exponential stabilization of unstable fixed points by the proposed predictive control method. In addition, we show how a chaotic system with multiple unstable periodic orbits can be stabilized by taking the system dynamics from one UPO to another. Control performances of these approaches are demonstrated by numerical simulations.


2005 ◽  
Vol 15 (01) ◽  
pp. 83-98 ◽  
Author(s):  
QIUDONG WANG ◽  
ALI OKSASOGLU

In this paper, we discuss a new mechanism for chaos in light of some new developments in the theory of dynamical systems. It was shown in [Wang & Young, 2002b] that strange attractors occur when an autonomous system undergoing a generic Hopf bifurcation is subjected to a weak external forcing that is periodically turned on and off. For illustration purposes, we apply these results to the Chua's system. Derivation of conditions for chaos along with the results of numerical simulations are presented.


2002 ◽  
Vol 12 (07) ◽  
pp. 1605-1618 ◽  
Author(s):  
JOSE ALVAREZ-RAMIREZ ◽  
HECTOR PUEBLA ◽  
ILSE CERVANTES

In this paper, the stability of observer-based chaotic communications using Lur'e systems is presented. In this approach, the transmitter contains a chaotic oscillator with an input that is modulate by the information signal. The receiver is composed by a copy of the transmitter driven by a synchronization signal. Some effects of transmission noise on the demodulation procedure are discussed. Numerical simulations on Chua's circuit are provided to illustrate our findings.


2006 ◽  
Vol 16 (04) ◽  
pp. 1041-1047 ◽  
Author(s):  
CHUANDONG LI ◽  
XIAOFENG LIAO

As a special case of generalized synchronization, chaos anti-synchronization can be characterized by the vanishing of the sum of relevant variables. In this paper, based on Lyapunov stability theorem for ordinary differential equations, several sufficient conditions for guaranteeing the existence of anti-synchronization in a class of coupled identical chaotic systems via linear feedback or adaptive linear feedback methods are derived. Chua's circuit is presented as an example to demonstrate the effectiveness of the proposed approach by computer simulations.


Sign in / Sign up

Export Citation Format

Share Document