scholarly journals Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Shi-Chao Yi ◽  
Fu-jun Chen ◽  
Lin-Quan Yao

We present novel Gauss integration schemes with radial basis point interpolation method (RPIM). These techniques define new Gauss integration scheme, researching Gauss points (RGD), and reconstructing Gauss domain (RGD), respectively. The developments lead to a curtailment of the elapsed CPU time without loss of the accuracy. Numerical results show that the schemes reduce the computational time to 25% or less in general.

2016 ◽  
Vol 9 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Abderrachid Hamrani ◽  
Idir Belaidi ◽  
Eric Monteiro ◽  
Philippe Lorong

AbstractIn order to overcome the possible singularity associated with the Point Interpolation Method (PIM), the Radial Point Interpolation Method (RPIM) was proposed by G. R. Liu. Radial basis functions (RBF) was used in RPIM as basis functions for interpolation. All these radial basis functions include shape parameters. The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory. The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM. The RPIM is studied based on the global Galerkin weak form performed using two integration technics: classical Gaussian integration and the strain smoothing integration scheme. The numerical performance of this method is tested on their behavior on curve fitting, and on three elastic mechanical problems with regular or irregular nodes distributions. A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system. All resulting RPIM methods perform very well in term of numerical computation. The Smoothed Radial Point Interpolation Method (SRPIM) shows a higher accuracy, especially in a situation of distorted node scheme.


2005 ◽  
Vol 02 (04) ◽  
pp. 645-665 ◽  
Author(s):  
G. R. LIU ◽  
G. Y. ZHANG ◽  
K. Y. DAI ◽  
Y. Y. WANG ◽  
Z. H. ZHONG ◽  
...  

A linearly conforming point interpolation method (LC-PIM) is developed for 2D solid problems. In this method, shape functions are generated using the polynomial basis functions and a scheme for the selection of local supporting nodes based on background cells is suggested, which can always ensure the moment matrix is invertible as long as there are no coincide nodes. Galerkin weak form is adopted for creating discretized system equations, and a nodal integration scheme with strain smoothing operation is used to perform the numerical integration. The present LC-PIM can guarantee linear exactness and monotonic convergence for the numerical results. Numerical examples are used to examine the present method in terms of accuracy, convergence, and efficiency. Compared with the finite element method (FEM) using linear triangle elements and the radial point interpolation method (RPIM) using Gauss integration, the LC-PIM can achieve higher convergence rate and better efficiency.


Teknik ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 64
Author(s):  
Kresno Wikan Sadono

Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM) dengan integrasi waktu discontinuous Galerkin method (DGM), metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ) dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM. [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time integration is derived for linear-DGM and quadratic-DGM. The simulation result shows that this numerical method, close to the results exact well. The results of numerical simulations with RPIM-DGM show, the more nodes and the smaller the time increment, the more accurate the numerical results. Other results showed, integration with quadratic-DGM for a time increment, and a certain number of nodes, further improving accuracy, compared with the linear-DGM. 


2017 ◽  
Vol 27 (6) ◽  
pp. 1249-1265 ◽  
Author(s):  
Yijun Liu ◽  
Guiyong Zhang ◽  
Huan Lu ◽  
Zhi Zong

Purpose Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness. Design/methodology/approach This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells. Findings Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies. Practical implications The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems. Originality/value It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2288
Author(s):  
Hongming Luo ◽  
Guanhua Sun

The PU (partition-of-unity) based FE-RPIM QUAD4 (4-node quadrilateral) element was proposed for statics problems. In this element, hybrid shape functions are constructed through multiplying QUAD4 shape function with radial point interpolation method (RPIM). In the present work, the FE-RPIM QUAD4 element is further applied for structural dynamics. Numerical examples regarding to free and forced vibration analyses are presented. The numerical results show that: (1) If CMM (consistent mass matrix) is employed, the FE-RPIM QUAD4 element has better performance than QUAD4 element under both regular and distorted meshes; (2) The DLMM (diagonally lumped mass matrix) can supersede the CMM in the context of the FE-RPIM QUAD4 element even for the scheme of implicit time integration.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1305
Author(s):  
Ahmad Fakhari ◽  
Željko Tukovic ◽  
Olga Sousa Carneiro ◽  
Célio Fernandes

The extrudate swell, i.e., the geometrical modifications that take place when the flowing material leaves the confined flow inside a channel and moves freely without the restrictions that are promoted by the walls, is a relevant phenomenon in several polymer processing techniques. For instance, in profile extrusion, the extrudate cross-section is subjected to a number of distortions that are motivated by the swell, which are very difficult to anticipate, especially for complex geometries. As happens in many industrial processes, numerical modelling might provide useful information to support design tasks, i.e., to allow for identifying the best strategy to compensate the changes promoted by the extrudate swell. This study reports the development of an improved interface tracking algorithm that employs the least-squares volume-to-point interpolation method for the grid movement. The formulation is enriched further with the consistent second-order time-accurate non-iterative Pressure-Implicit with Splitting of Operators (PISO) algorithm, which allows for efficiently simulating free-surface flows. The accuracy and robustness of the proposed solver is illustrated through the simulation of the steady planar and asymmetric extrudate swell flows of Newtonian fluids. The role of inertia on the extrudate swell is studied, and the results that are obtained with the newly improved solver show good agreement with reference data that are found in the scientific literature.


Sign in / Sign up

Export Citation Format

Share Document