scholarly journals On the Number of Spanning Trees of Graphs

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ş. Burcu Bozkurt ◽  
Durmuş Bozkurt

We establish some bounds for the number of spanning trees of connected graphs in terms of the number of vertices(n), the number of edges(m), maximum vertex degree(Δ1), minimum vertex degree(δ),…first Zagreb index(M1),and Randić index(R-1).

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xu Li ◽  
Maqsood Ahmad ◽  
Muhammad Javaid ◽  
Muhammad Saeed ◽  
Jia-Bao Liu

A topological invariant is a numerical parameter associated with molecular graph and plays an imperative role in the study and analysis of quantitative structure activity/property relationships (QSAR/QSPR). The correlation between the entire π-electron energy and the structure of a molecular graph was explored and understood by the first Zagreb index. Recently, Liu et al. (2019) calculated the first general Zagreb index of the F-sum graphs. In the same paper, they also proposed the open problem to compute the general Randić index RαΓ=∑uv∈EΓdΓu×dΓvα of the F-sum graphs, where α∈R and dΓu denote the valency of the vertex u in the molecular graph Γ. Aim of this paper is to compute the lower and upper bounds of the general Randić index for the F-sum graphs when α∈N. We present numerous examples to support and check the reliability as well as validity of our bounds. Furthermore, the results acquired are the generalization of the results offered by Deng et al. (2016), who studied the general Randić index for exactly α=1.


2020 ◽  
Vol 12 (4) ◽  
pp. 645-655
Author(s):  
T. P. Jude ◽  
E. Panchadcharam ◽  
K. Masilamani

The topological index is a numerical representation of a molecular structure. In chemical graphs, the atoms and the chemical bonds between them are represented by vertices and edges respectively. Vertex degree based topological indices are the most studied and mostly used type of topological indices. The mostly used vertex degree based topological indices in the field of drug design and developments are the Zagreb index and the Randić index. The structural chemistry of dendrimers could be manipulated by their topological indices to get the specific structure with required properties to deliver the drugs to target carrier vehicle. In this work, topological indices of three types of dendrimers which are used as the drug delivery system were studied and their Zagreb index and the Randić index were calculated using molecular graph theory. Moreover, the other versions of these two indices were also calculated to these dendrimers.


2017 ◽  
Vol 14 (1) ◽  
pp. 796-799 ◽  
Author(s):  
Yingfang Li ◽  
Li Yan ◽  
Muhammad Kamran Jamil ◽  
Mohammad Reza Farahani ◽  
Wei Gao ◽  
...  

Recently, Gutman et al. presented some vertex-degree based topological indices, that earlier have been considered in the chemical and/or mathematical literature, but, evaded the attention of most mathematical chemists. These are the reciprocal Randic index (RR), the reduced reciprocal Randic index (RRR), the reduced second Zagreb index (RM2) and the forgotten index (F). In this paper, we compute these topological indices of HAC5C7[p, q] and HAC5C6C7[p, q] nanotubes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
H. M. Awais ◽  
Muhammad Javaid ◽  
Akbar Ali

The first general Zagreb (FGZ) index (also known as the general zeroth-order Randić index) of a graph G can be defined as M γ G = ∑ u v ∈ E G d G γ − 1 u + d G γ − 1 v , where γ is a real number. As M γ G is equal to the order and size of G when γ = 0 and γ = 1 , respectively, γ is usually assumed to be different from 0 to 1. In this paper, for every integer γ ≥ 2 , the FGZ index M γ is computed for the generalized F-sums graphs which are obtained by applying the different operations of subdivision and Cartesian product. The obtained results can be considered as the generalizations of the results appeared in (IEEE Access; 7 (2019) 47494–47502) and (IEEE Access 7 (2019) 105479–105488).


2021 ◽  
Vol 4 (2) ◽  
pp. 11-16
Author(s):  
Ivan Gutman ◽  
◽  
Veerabhadrappa R. Kulli ◽  

A novel vertex-degree-based topological invariant, called Nirmala index, was recently put forward, defined as the sum of the terms \(\sqrt{d(u)+d(v)}\) over all edges \(uv\) of the underlying graph, where \(d(u)\) is the degree of the vertex \(u\). Based on this index, we now introduce the respective ``Nirmala matrix'', and consider its spectrum and energy. An interesting finding is that some spectral properties of the Nirmala matrix, including its energy, are related to the first Zagreb index.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


Filomat ◽  
2014 ◽  
Vol 28 (9) ◽  
pp. 1849-1853 ◽  
Author(s):  
Jianxi Liu

The variation of Randic index R'(G) of a graph G is defined by R'(G) = ?uv 1/ max{du,dv}, where du is the degree of a vertex u in G and the summation extends over all edges uv of G. In this work, we characterize the extremal trees achieving the minimum value of R0 for trees with given number of vertices and leaves. Furthermore, we characterize the extremal graphs achieving the minimum value of R' for connected graphs with given number of vertices and girth.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 271 ◽  
Author(s):  
Fang Gao ◽  
Xiaoxin Li ◽  
Kai Zhou ◽  
Jia-Bao Liu

The vertex k-partiteness of graph G is defined as the fewest number of vertices whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general zeroth-order Randić index, and the modified-Wiener index among graphs of order n with vertex k-partiteness not more than m .


Sign in / Sign up

Export Citation Format

Share Document