scholarly journals Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Nahed S. Hussein

A numerical boundary integral scheme is proposed for the solution to the system of…eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.

2003 ◽  
Vol 10 (3) ◽  
pp. 467-480
Author(s):  
Igor Chudinovich ◽  
Christian Constanda

Abstract The existence of distributional solutions is investigated for the time-dependent bending of a plate with transverse shear deformation under mixed boundary conditions. The problem is then reduced to nonstationary boundary integral equations and the existence and uniqueness of solutions to the latter are studied in appropriate Sobolev spaces.


Since every plane-harmonic function is associated with a conjugate, problems in which normal gradients are specified on the boundary can be transformed into problems in which boundary values are specified. There then remains, however, the problem of deducing a function ψ from its conjugate ϕ, and this, when the conjugate has been determined only approximately, entails uncertainties which were exemplified in Part V. To minimize the errors of approximate computation ψ and ϕ should be determined severally and independently, consequently a method of direct attack is still needed on problems in which normal gradients are specified. Recent applications have, moreover, presented cases in which the boundary conditions are ‘mixed’, i.e. values are specified at some parts of the boundary, gradients at others. Here, two methods are propounded for the satisfaction of mixed boundary conditions, the first applicable also to cases in which normal gradients alone are specified. Test examples indicate that the wanted extension of method is now available.


1978 ◽  
Vol 68 (5) ◽  
pp. 1331-1357
Author(s):  
David M. Cole ◽  
Dan D. Kosloff ◽  
J. Bernard Minster

abstract The boundary initial value problems of elastodynamics are formulated as boundary integral equations. It is shown that these integral equations may be solved by time-stepping numerical methods for the unknown boundary values. A specific numerical scheme is presented for antiplane strain problems and a numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document