stress component
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 53)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guizhen Wang ◽  
Linglong Zhou ◽  
Reem Alotaibi ◽  
Roaya Hdeib

Abstract After reviewing many literature foundations, the thesis combines the basic methods of elastic mechanics with mathematical knowledge, sets the bipotential stress potential complex function and analyses the relationship between stress component, strain component and stress potential function, and applies the complex variable function. The expression of the relevant stress component is derived, and the displacement boundary conditions of the surrounding rock of shallow circular tunnel are obtained. Furthermore, the paper applies the basic theory of complex variable function to solve the boundary condition complex variable function for common tunnel sections, and obtains the analytical expression of the surrounding rock stress of shallow circular tunnel. The simulation is carried out by finite element method. The establishment of complex variable function has a good application value in solving the stress of surrounding rock of shallow tunnel.


2021 ◽  
Author(s):  
Yiming Shangguan ◽  
Wenjing Wang ◽  
Chao Yang ◽  
Anrui He

Abstract With the continuous development of the subway, the demand for its safety and stability is getting higher and higher. It is of great significance to accurately evaluate the fatigue life of the carbody to ensure the subway's safe operation. In this paper, the finite element model of a subway head carbody was established, and the fatigue strength of the welded structure on the carbody was evaluated based on Multi-axial stress. The local coordinate system was defined according to the geometrical characteristics of the welds. Local stresses perpendicular and parallel to the weld seam were obtained to calculate the stress ratio, stress range, and allowable stress value corresponding to the stress component. According to the joint fatigue resistance, the components of the degree of utilization and comprehensive degree of utilization are calculated to evaluate the structural fatigue strength under the survival rate of 97.5% and load cycles of 10 7 . The evaluation of the fatigue strength of the pivotal weld joints shows that the fatigue strength of the aluminum alloy carbody meets the design requirements, the weld of the carbody has a strong ability to resist fatigue damage. The fatigue strength of the weld is mainly affected by the normal stress component, while the shear stress has little effect on the fatigue strength of the structure. In addition, compared with the filleted weld joint and the butt-welded joint, the normal stress parallels to and perpendicular to the weld direction and shear stress have the greatest effect on the lap-welded joint. Meanwhile, the comprehensive degree of utilization of the lap-welded joint is the largest at 0.49. The introduction of multi-axial stress for the fatigue strength evaluation is beneficial when considering the material utilization degree in multiple structural directions. This research results provide a reference for fatigue strength evaluation of subway carbody's welded structure.


2021 ◽  
Vol 16 ◽  
pp. 245-249
Author(s):  
Sandip Saha ◽  
Vikash Kumar ◽  
Apurba Narayan Das

The dynamic problem of a punch with rounded tips moving in an elastic half-space in a fixed direction has been considered. The static problem of determining stress component under the contact region of a punch has also been solved. Fourier integral transform has been employed to reduce the problems in solving dual integral equations. These integral equations have been solved using Cooke’s [1] result (1970) to obtain the stress component. Finally, exact expressions for stress components under the punch and the normal displacement component in the region outside the punch have been derived. Numerical results for stress intensity factor at the punch end and torque applied over the contact region have been presented in the form of graph.


2021 ◽  
pp. 58-1
Author(s):  
Antoine Hochet ◽  
Thierry Huck ◽  
Olivier Arzel ◽  
Florian Sévellec ◽  
Alain Colin de Verdiére

AbstractOne of the proposed mechanisms to explain the multidecadal variability observed in sea surface temperature of the North Atlantic consists of a large-scale low-frequency internal mode spontaneously developing because of the large-scale baroclinic instability of the time-mean circulation. Even though this mode has been extensively studied in terms of the buoyancy variance budget, its energetic properties remain poorly known. Here we perform the full mechanical energy budget including available potential energy (APE) and kinetic energy (KE) of this internal mode and decompose the budget into three frequency bands: mean, low frequency (LF) associated with the large-scale mode and high frequency (HF) associated with mesocale eddy turbulence. This decomposition allows us to diagnose the energy fluxes between the different reservoirs and to understand the sources and sinks. Due to the large-scale of the mode, most of its energy is contained in the APE. In our configuration, the only source of LF APE is the transfer from mean APE to LF APE that is attributed to the large-scale baroclinic instability. In return the sinks of LF APE are the parameterized diffusion, the flux toward HF APE and to a much lesser extent toward LF KE. The presence of an additional wind-stress component weakens multidecadal oscillations and modifies the energy fluxes between the different energy reservoirs. The KE transfer appears to only have a minor influence on the multidecadal mode compared to the other energy sources involving APE, in all experiments. These results highlight the utility of the full APE/ KE budget.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 383
Author(s):  
Alexey Savitskii ◽  
Aleksei Lobasov ◽  
Dmitriy Sharaborin ◽  
Vladimir Dulin

The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air for different swirl rates of the jet (Re = 5 × 103) and the mixing of a pilot jet (Re = 2 × 104) with a high-swirl co-flow of a generic gas turbine burner (Re = 3 × 104). The measured spatial distributions of the turbulent Reynolds stresses and fluxes were compared with their predictions by gradient turbulent transport models. The local values of the turbulent viscosity and turbulent diffusivity coefficients were evaluated based on Boussinesq’s and gradient diffusion hypotheses. The studied flows with high swirl were characterized by a vortex core breakdown and intensive coherent flow fluctuations associated with large-scale vortex structures. Therefore, the contribution of the coherent flow fluctuations to the turbulent transport was evaluated based on proper orthogonal decomposition (POD). The turbulent viscosity and diffusion coefficients were also evaluated for the stochastic (residual) component of the velocity fluctuations. The high-swirl flows with vortex breakdown for the free jet and for the combustion chamber were characterized by intensive turbulent fluctuations, which contributed substantially to the local turbulent transport of mass and momentum. Moreover, the high-swirl flows were characterized by counter-gradient transport for one Reynolds shear stress component near the jet axis and in the outer region of the mixing layer.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012079
Author(s):  
A V Valov

Abstract The primary focus of this paper is to investigate the interaction between simultaneously propagating multiple fractures, initiated from an inclined well. In particular, the aim is to better understand the influence of the well inclination angle on the stress shadow between the fractures and on the overall resulting geometry of individual cracks. To simplify the analysis, the paper assumes the limit of large perforation friction, which leads to a uniform flux distribution between the fractures. The mathematical model for multiple hydraulic fractures is constructed by coupling together the respective models for individual fractures, each representing a single planar fracture model. In this approach, the fracture induced stress or stress shadow from a previous time step is used as an input for a given single hydraulic fracture to propagate independently. Further, to reduce computational burden, the effects associated with tangential stresses and displacements are neglected, whereby the stress interaction between the fractures is solely described by the normal opening and the normal stress component. Numerical results are presented for the storage viscosity dominated regime, whereby the effects of toughness and leak-off are negligible. An interesting behaviour is observed, demonstrating that the well inclination angle plays a significant role on the overall fracture symmetry. For zero inclination, all the fractures are nearly symmetrical and identical. However, once well inclination is introduced, this breaks the symmetry, making a profound effect on the final result.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5955
Author(s):  
Karolina Adach-Pawelus ◽  
Daniel Pawelus

This paper investigates the problem of stability in a group of headings driven in high horizontal stress fields in the copper ore mines of the Legnica-Glogow Copper Belt (LGCB). The headings are protected with the roof bolting system. This problem is of high importance due to special safety regulations which apply in mining workings serving as airways and haulageways. The analysis was performed for a group of four headings driven in the geological and mining conditions of the Polkowice-Sieroszowice mine. The stability of the headings was evaluated with the use of Finite Element Method (FEM). The parameters of the rocks used in the numerical modeling have been determined on the basis of the Hoek–Brown classification, with the use of the RocLab 1.0 software. The parameters of the stress field have been identified on the basis of in situ measurements, which were performed in the Polkowice-Sieroszowice mine in 2012. The measurements were carried out with the use of the overcoring method, which is a stress relief method. A CSIRO HI probe was used as the measuring device. The tests were carried out on three measuring points, on which six successful tests were performed. The measurements confirmed the presence of high horizontal stresses in the rock mass. Numerical modeling was performed using the Phase2 v.8.0 software, in a triaxial stress state and in a plane strain state. The rock mass was described with an elastic-plastic model with softening. Numerical analyses were based on the Mohr–Coulomb failure criterion. It was assumed that the optimal measure of the stability of the group of headings is the range of the formed zone of yielded rock mass in the excavation roof. Numerical simulations have shown that the direction of driving the headings in the field of increased horizontal stresses may be of key importance for the stability of the headings in LGOM mines. The greatest extent of the yielded rock mass zone in the excavation roof occurred when the group of headings was driven in the direction perpendicular to the direction of the maximum horizontal stress component σH. The obtained results served to provide an example of the application of a roof bolting system to protect headings driven in unfavorable conditions in a high horizontal stress field.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liu Rui ◽  
Zhu Quanjie

In this study, a detailed analysis was conducted to evaluate the impacts of the deviatoric stress component and spherical stress component on the stability of surrounding rocks in the roadway via the theoretical analysis and calculation and numerical simulation. Based on the analysis, the distribution laws guiding the main stress differences, plastic zone, convergence of surrounding rocks, and third invariant of stress under various conditions (such as equal spherical stress and unequal deviatoric stress and equal deviatoric stress and unequal spherical stress) were developed, providing an optimization scheme for roadway support misunderstanding under the conditions of high spherical stress field and high deviator stress field. The study further reveals that under the circumstance of the constant spherical stress, the greater the deviatoric stress, the plastic zone range of the surrounding rock of the roadway, the range of tensile deformation of the surrounding rock, the amount of convergence of the surrounding rock, the probability of separation of the roof and floor of the roadway, and the principal stress difference and the main stress, the greater the concentration range of the maximum stress difference is, and the maximum principal stress difference is mainly concentrated in the roof and floor rocks of the roadway, and the greater the deviatoric stress, the greater the probability that the roof and floor rocks of the roadway will be separated, and the maximum principal stress difference is mainly concentrated in the roof and floor rocks of the roadway, the greater the deviator stress, the greater the concentration range of the maximum value of the principal stress difference and the principal stress difference; when the deviator stress is constant, the range of the plastic zone and the maximum principal stress difference concentration range of the surrounding rock of the roadway decrease with the increase of the ball stress, and the principal stress difference, the amount of convergence of the surrounding rock, and the range of tensile deformation increase with the increase of the ball stress. The maximum principal stress difference is mainly concentrated in the roof and floor rocks of the roadway. The principal stress difference increases with the increase of the spherical stress, and the maximum concentration range of the principal stress difference decreases with the increase of the spherical stress. After the method proposed in this paper optimizes the actual roadway support on site, the surrounding rock deformation of the roadway is small and the control is relatively ideal, which basically meets the engineering needs.


2021 ◽  
Vol 4 (5) ◽  
pp. 37
Author(s):  
Lamberto Re

Ozone is not nowadays used in a single medical branch, due to its immune and metabolic effects. This molecule is considered as a pro-drug which can induce at certain non-toxic doses a rearrangement of the biochemical pathways with the activation of a second messenger in a cascade with a multiple system action. Nonetheless, its difference from a drug consists in the fact that its action can’t be explained as a simple interaction between a molecule and a receptor, thus, it can’t be considered according to the classical pharmacological schemes and new concepts must be defined. Furthermore, ozone is able to activate Nfr2 protein. Our study reflects how the levels of Nrf2 in peripheral blood mononuclear cells were found to increase immediately after ozone exposure and when measured 30 minutes following reinfusion demonstrating that the oxidative stress was able to activate all the blood components. After a series of 3 systemic indirect endovenous applications, Nrf2 returned back to the basal level. At the end of the experiment the activities of superoxide dismutase and catalase were increased. This metabolic pathway is common to all cell lines. In light of the above, ozone could be very helpful as integrative and complementary support for pharmacological therapy modulating the oxidative stress component in many illnesses, elderly and rare diseases, according to not only a legal regulation but also a proper education and training of physicians.


Author(s):  
Nhan Phuc Thanh Nguyen ◽  
Duong Dinh Le ◽  
Robert Colebunders ◽  
Joseph Nelson Siewe Fodjo ◽  
Trung Dinh Tran ◽  
...  

Frontline healthcare workers (HCWs) involved in the COVID-19 response have a higher risk of experiencing psychosocial distress amidst the pandemic. Between July and September 2020, a second wave of the COVID-19 pandemic appeared in Vietnam with Da Nang city being the epicenter. During the outbreak, HCWs were quarantined within the health facilities in a bid to limit the spread of COVID-19 to their respective communities. Using the stress component of the 21-item Depression, Anxiety and Stress Scale (DASS-21), we assessed the level of stress among HCWs in Da Nang city. Between 30 August and 15 September 2020, 746 frontline HCWs were recruited to fill in an online structured questionnaire. Overall, 44.6% of participants experienced increased stress and 18.9% severe or extremely severe stress. In multivariable analysis, increased stress was associated with longer working hours (OR = 1.012; 95% CI: 1.004–1.019), working in health facilities providing COVID-19 treatment (OR = 1.58, 95% CI: 1.04–2.39), having direct contact with patients or their bio-samples (physicians, nurses and laboratory workers; OR = 1.42, 95% CI: 1.02–1.99), low confidence in the available personal protective equipment (OR = 0.846; 95% CI: 0.744–0.962) and low knowledge on COVID-19 prevention and treatment (OR = 0.853; 95% CI: 0.739–0.986). In conclusion, many frontline HCWs experienced increased stress during the COVID-19 outbreak in Da Nang city. Reducing working time, providing essential personal protective equipment and enhancing the knowledge on COVID-19 will help to reduce this stress. Moreover, extra support is needed for HCWs who are directly exposed to COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document