scholarly journals Effects of Convective Conditions and Chemical Reaction on Peristaltic Flow of Eyring-Powell Fluid

2014 ◽  
Vol 11 (4) ◽  
pp. 221-233 ◽  
Author(s):  
T. Hayat ◽  
Anum Tanveer ◽  
Humaira Yasmin ◽  
A. Alsaedi

This paper addresses the peristaltic flow of Eyring-Powell fluid in a symmetric channel with convective conditions. The Soret and Dufour effects are considered. Impact of first order chemical reaction is seen. The channel walls are of compliant nature. Long wavelength and low Reynolds number concepts are implemented. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are presented and discussed in detail for various pertinent parameters.

2015 ◽  
Vol 09 (01) ◽  
pp. 1650012 ◽  
Author(s):  
T. Hayat ◽  
Naheed Batool ◽  
H. Yasmin ◽  
A. Alsaedi ◽  
M. Ayub

Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric channel is addressed. Modeling is given with Soret and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Biot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.


1979 ◽  
Vol 44 (5) ◽  
pp. 1388-1396
Author(s):  
Václav Kolář ◽  
Zdeněk Brož

Relations describing the mass transfer accompanied by an irreversible first order chemical reaction are derived, based on the formerly published general theoretical concepts of interfacial mass transfer. These relations are compared with experimental results taken from literature.


Author(s):  
K. Gautam ◽  
P. A. L. Narayana

Carbon dioxide (CO 2 ) sequestration in deep saline aquifers is considered to be one of the most promising solutions to reduce the amount of greenhouse gases in the atmosphere. As the concentration of dissolved CO 2 increases in unsaturated brine, the density increases and the system may ultimately become unstable, and it may initiate convection. In this article, we study the stability of convection in an anisotropic horizontal porous layer, where the solute is assumed to decay via a first-order chemical reaction. We perform linear and nonlinear stability analyses based on the steady-state concentration field to assess neutral stability curves as a function of the anisotropy ratio, Damköhler number and Rayleigh number. We show that anisotropy in permeability and solutal diffusivity play an important role in convective instability. It is shown that when solutal horizontal diffusivity is larger than the vertical diffusivity, varying the ratio of vertical to horizontal permeabilities does not significantly affect the behaviour of instability. It is also noted that, when horizontal permeability is higher than the vertical permeability, varying the ratio of vertical to horizontal solutal diffusivity does have a substantial effect on the instability of the system when the reaction rate is dominated by the diffusion rate. We used the Chebyshev-tau method coupled with the QZ algorithm to solve the eigenvalue problem obtained from both the linear and nonlinear stability theories.


Sign in / Sign up

Export Citation Format

Share Document