scholarly journals On Exponential Stabilizability for a Class of Switched Nonlinear Systems with Mixed Time-Varying Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Jie Qi ◽  
Yuangong Sun

We study the exponential stabilizability for a class of switched nonlinear systems with mixed time-varying delays. By using a new technique developed for positive systems, we design the average dwell time switching under which the switched nonlinear system is exponentially stable for any bounded delays. Finally, numerical examples are worked out to illustrate the main theoretical result.

Author(s):  
Xiaoli Wang ◽  
Chuntao Shao

In this paper, we address the (uniform) finite-time input-to-state stability problem for switched nonlinear systems. We prove that a switched nonlinear system has a useful finite-time input-to-state stability property under average dwell-time switching signals if each constituent subsystem has finite-time input-to-state stability. Moreover, we prove the equivalence between the optimal costs for the switched nonlinear systems and for the relaxed differential inclusion.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
N. Yotha ◽  
T. Botmart ◽  
T. Mouktonglang

The problem of exponential stability for a class of switched nonlinear systems with discrete and distributed time-varying delays is studied. The constraint on the derivative of the time-varying delay is not required which allows the time delay to be a fast time-varying function. We study the stability properties of switched nonlinear systems consisting of both stable and unstable subsystems. Average dwell-time approached and improved piecewise Lyapunov functional combined with Leibniz-Newton are formulated. New delay-dependent sufficient conditions for the exponential stabilization of the switched systems are first established in terms of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Leipo Liu ◽  
Xiangyang Cao ◽  
Bo Fan ◽  
Zhumu Fu

In this paper, the problem of L1 input-output finite-time control of positive switched nonlinear systems with time-varying and distributed delays is investigated. Nonlinear functions considered in this paper are located in a sector field. Firstly, the proof of the positivity of switched positive nonlinear systems with time-varying and distributed delays is given, and the concept of L1 input-output finite-time stability (L1 IO-FTS) is firstly introduced. Then, by constructing multiple co-positive-type nonlinear Lyapunov functions and using the average dwell time (ADT) approach, a state feedback controller is designed and sufficient conditions are derived to guarantee the corresponding closed-loop system is L1 IO-FTS. Such conditions can be easily solved by linear programming. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.


2019 ◽  
Vol 42 (6) ◽  
pp. 1215-1224
Author(s):  
Ronghao Wang ◽  
Jianchun Xing ◽  
Zhengrong Xiang ◽  
Qiliang Yang

Finite-time stability and stabilization for switched nonlinear systems has been investigated in the paper. Based on existing works, we find that related results on autonomous switched nonlinear systems cannot be simply extended to non-autonomous systems. A sufficient condition has been proposed for this class of systems using the average dwell time method. Specifically, a control Lyapunov function approach is employed to stabilize the system and the finite-time controller is designed using a small control property. In contrast to autonomous switched systems, a finite-time stabilizer is constructed for time-varying switched nonlinear systems, even under the situation in which the switching mode is different between the system and the controller. Furthermore, the relation between the settling time and the average dwell time has been revealed. Finally, an example case is presented for the obtained result.


2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
Zhengrong Xiang ◽  
Qingwei Chen

This paper is concerned with the problem of robust reliable stabilization of switched nonlinear systems with time-varying delays and delayed switching is investigated. The parameter uncertainties are allowed to be norm-bounded. The switching instants of the controller experience delays with respect to those of the system. The purpose of this problem is to design a reliable state feedback controller such that, for all admissible parameter uncertainties and actuator failure, the system state of the closed-loop system is exponentially stable. We show that the addressed problem can be solved by means of algebraic matrix inequalities. The explicit expression of the desired robust controllers is derived in terms of linear matrix inequalities (LMIs).


2016 ◽  
Vol 12 (2) ◽  
pp. 5870-5879
Author(s):  
Hui Xu ◽  
Min Wang

This article is concerned with the robust H1 control problem of a class of switched nonlinear systems with norm-bounded time-varying uncertainties. The system considered in this class is composed of two parts: a uncertain linear switched part and a nonlinear part, which is also switched systems. Under the circumstances, that the H1 control problem of all subsystems are not all solvable, the switched feedback control law and the switching law are designed using the average dwell-time method. The corresponding closed-loop switched system is exponentially stable and achieves a weighted L2-gain.


Sign in / Sign up

Export Citation Format

Share Document