scholarly journals An Adaptive Nonlinear Control for Gyro Stabilized Platform Based on Neural Networks and Disturbance Observer

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jiancheng Fang ◽  
Rui Yin

In order to improve the tracking performance of gyro stabilized platform with disturbances and uncertainties, an adaptive nonlinear control based on neural networks and reduced-order disturbance observer for disturbance compensation is developed. First the reduced-order disturbance observer estimates the disturbance directly. The error of the estimated disturbance caused by parameter variation and measurement noise is then approximated by neural networks. The phase compensation is also introduced to the proposed control law for the desired sinusoidal tracking. The stability of the proposed scheme is analyzed by the Lyapunov criterion. Experimental results show the validity of the proposed control approach.

2008 ◽  
Vol 22 (6) ◽  
pp. 1073-1083 ◽  
Author(s):  
Henzeh Leeghim ◽  
In-Ho Seo ◽  
Hyochoong Bang

2001 ◽  
Vol 11 (03) ◽  
pp. 857-863 ◽  
Author(s):  
EDGAR N. SANCHEZ ◽  
JOSE P. PEREZ ◽  
GUANRONG CHEN

This Letter suggests a new approach to generating chaos via dynamic neural networks. This approach is based on a recently introduced methodology of inverse optimal control for nonlinear systems. Both Chen's chaotic system and Chua's circuit are used as examples for demonstration. The control law is derived to force a dynamic neural network to reproduce the intended chaotic attractors. Computer simulations are included for illustration and verification.


Author(s):  
Xu-Zhi Lai ◽  
Chang-Zhong Pan ◽  
Min Wu ◽  
Simon X. Yang ◽  
Wei-Hua Cao

This paper presents a novel three-stage control strategy for the motion control of an underactuated three-link passive–active–active (PAA) manipulator. First, a nonlinear control law is designed to make the angle and angular velocity of the third link convergent to zero. Then, a swing-up control law is designed to increase the system energy and control the posture of the second link. Finally, an integrated method with linear control and nonlinear control is introduced to stabilize the manipulator at the straight-up position. The stability of the control system is guaranteed by Lyapunov theory and LaSalle’s invariance principle. Compared to other approaches, the proposed strategy innovatively introduces a preparatory stage to drive the third link to stretch-out toward the second link in a natural way, which makes the swing-up control easy and quick. Besides, the intergraded method ensures the manipulator moving into the balancing stage smoothly and easily. The effectiveness and efficiency of the control strategy are demonstrated by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document