SOME NEWTON-TYPE ITERATIVE METHODS WITH AND WITHOUT MEMORY FOR SOLVING NONLINEAR EQUATIONS

2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
S. Artidiello ◽  
A. Cordero ◽  
Juan R. Torregrosa ◽  
M. P. Vassileva

A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 943
Author(s):  
Xiaofeng Wang ◽  
Yingfanghua Jin ◽  
Yali Zhao

Some Kurchatov-type accelerating parameters are used to construct some derivative-free iterative methods with memory for solving nonlinear systems. New iterative methods are developed from an initial scheme without memory with order of convergence three. New methods have the convergence order 2+5≈4.236 and 5, respectively. The application of new methods can solve standard nonlinear systems and nonlinear ordinary differential equations (ODEs) in numerical experiments. Numerical results support the theoretical results.


Author(s):  
Pankaj Jain ◽  
Prem Bahadur Chand

AbstractWe derive two iterative methods with memory for approximating a simple root of any nonlinear equation. For this purpose, we take two optimal methods without memory of order four and eight and convert them into the methods with memory without increasing any further function evaluation. These methods involve a self-accelerator (parameter) that depends upon the iteration index to increase the order of the optimal methods. Consequently, the efficiency of the new methods is considerably high as compared to the methods without memory. Some numerical examples are provided in support of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Santiago Artidiello ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2011 ◽  
Vol 5 (2) ◽  
pp. 298-317 ◽  
Author(s):  
Miodrag Petkovic ◽  
Jovana Dzunic ◽  
Ljiljana Petkovic

An efficient family of two-point derivative free methods with memory for solving nonlinear equations is presented. It is proved that the convergence order of the proposed family is increased from 4 to at least 2 + ?6 ? 4.45, 5, 1/2 (5 + ?33) ? 5.37 and 6, depending on the accelerating technique. The increase of convergence order is attained using a suitable accelerating technique by varying a free parameter in each iteration. The improvement of convergence rate is achieved without any additional function evaluations meaning that the proposed methods with memory are very efficient. Moreover, the presented methods are more efficient than all existing methods known in literature in the class of two-point methods and three-point methods of optimal order eight. Numerical examples and the comparison with the existing two-point methods are included to confirm theoretical results and high computational efficiency. 2010 Mathematics Subject Classification. 65H05


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 452
Author(s):  
Giro Candelario ◽  
Alicia Cordero ◽  
Juan R. Torregrosa

In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence α + 1 and compare it with the existing fractional Newton method with order 2 α . Moreover, we also introduce a multipoint fractional Traub-type method with order 2 α + 1 and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton ( α = 1 of the first step of the class) and classical Traub’s scheme ( α = 1 of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub’s methods do not converge and the proposed methods do, among other advantages.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850010 ◽  
Author(s):  
Janak Raj Sharma ◽  
Ioannis K. Argyros ◽  
Deepak Kumar

We develop a general class of derivative free iterative methods with optimal order of convergence in the sense of Kung–Traub hypothesis for solving nonlinear equations. The methods possess very simple design, which makes them easy to remember and hence easy to implement. The Methodology is based on quadratically convergent Traub–Steffensen scheme and further developed by using Padé approximation. Local convergence analysis is provided to show that the iterations are locally well defined and convergent. Numerical examples are provided to confirm the theoretical results and to show the good performance of new methods.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1052 ◽  
Author(s):  
Jian Li ◽  
Xiaomeng Wang ◽  
Kalyanasundaram Madhu

Based on the Steffensen-type method, we develop fourth-, eighth-, and sixteenth-order algorithms for solving one-variable equations. The new methods are fourth-, eighth-, and sixteenth-order converging and require at each iteration three, four, and five function evaluations, respectively. Therefore, all these algorithms are optimal in the sense of Kung–Traub conjecture; the new schemes have an efficiency index of 1.587, 1.682, and 1.741, respectively. We have given convergence analyses of the proposed methods and also given comparisons with already established known schemes having the same convergence order, demonstrating the efficiency of the present techniques numerically. We also studied basins of attraction to demonstrate their dynamical behavior in the complex plane.


Sign in / Sign up

Export Citation Format

Share Document