scholarly journals A New Method for Inextensible Flows of Timelike Curves in Minkowski Space-Time E14

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Talat Körpinar

We construct a new method for inextensible flows of timelike curves in Minkowski space-time E14. Using the Frenet frame of the given curve, we present partial differential equations. We give some characterizations for curvatures of a timelike curve in Minkowski space-time E14.

2014 ◽  
Vol 32 (2) ◽  
pp. 45
Author(s):  
Talat Körpınar ◽  
Essin Turhan

In this paper, we construct a new method for inextensible flows of curves in E³. Using the Frenet frame of the given curve, we present partial differential equations. We give some characterizations for curvatures of a curve in E³.


1999 ◽  
Vol 59 (1) ◽  
pp. 337-342 ◽  
Author(s):  
Markus Bär ◽  
Rainer Hegger ◽  
Holger Kantz

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 59-69
Author(s):  
Jamshad Ahmad ◽  
Syed Tauseef Mohyud-Din

In this paper, we applied relatively new fractional complex transform (FCT) to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and Variational Iteration Method (VIM) is to find approximate solution of time- fractional Fornberg-Whitham and time-fractional Wu-Zhang equations. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs arising in mathematical physics and hence can be extended to other problems of diversified nonlinear nature. Numerical results coupled with graphical representations explicitly reveal the complete reliability and efficiency of the proposed algorithm.  DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11687BIBECHANA 12 (2015) 59-69 


Sign in / Sign up

Export Citation Format

Share Document