scholarly journals Partial Differential Equations An Essay towards an entirely new Method of Integrating them

Nature ◽  
1872 ◽  
Vol 5 (115) ◽  
pp. 199-200 ◽  
Author(s):  
J. W. L. G.
Author(s):  
Abdolamir Karbalaie ◽  
Hamed Hamid Muhammed ◽  
Bjorn-Erik Erlandsson

A new method proposed and coined by the authors as the homo-separation of variables method is utilized to solve systems of linear and nonlinear fractional partial differential equations (FPDEs). The new method is a combination of two well-established mathematical methods, namely, the homotopy perturbation method (HPM) and the separation of variables method. When compared to existing analytical and numerical methods, the method resulting from our approach shows that it is capable of simplifying the target problem at hand and reducing the computational load that is required to solve it, considerably. The efficiency and usefulness of this new general-purpose method is verified by several examples, where different systems of linear and nonlinear FPDEs are solved.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Talat Körpinar

We construct a new method for inextensible flows of timelike curves in Minkowski space-time E14. Using the Frenet frame of the given curve, we present partial differential equations. We give some characterizations for curvatures of a timelike curve in Minkowski space-time E14.


Author(s):  
N Flyer ◽  
A.S Fokas

A new method, combining complex analysis with numerics, is introduced for solving a large class of linear partial differential equations (PDEs). This includes any linear constant coefficient PDE, as well as a limited class of PDEs with variable coefficients (such as the Laplace and the Helmholtz equations in cylindrical coordinates). The method yields novel integral representations, even for the solution of classical problems that would normally be solved via the Fourier or Laplace transforms. Examples include the heat equation and the first and second versions of the Stokes equation for arbitrary initial and boundary data on the half-line. The new method has advantages in comparison with classical methods, such as avoiding the solution of ordinary differential equations that result from the classical transforms, as well as constructing integral solutions in the complex plane which converge exponentially fast and which are uniformly convergent at the boundaries. As a result, these solutions are well suited for numerics, allowing the solution to be computed at any point in space and time without the need to time step. Simple deformation of the contours of integration followed by mapping the contours from the complex plane to the real line allow for fast and efficient numerical evaluation of the integrals.


Sign in / Sign up

Export Citation Format

Share Document