Fractional Calculus of Fractal Interpolation Function on[0,b](b>0)
Keyword(s):
The paper researches the continuity of fractal interpolation function’s fractional order integral on[0,+∞)and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on[0,b](b>0)or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on[0,+∞)and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval[0,b].
2003 ◽
pp. 11-19
◽
2016 ◽
Vol 13
(6)
◽
pp. 3887-3906
◽
2020 ◽
Vol XVII
(2)
◽
pp. 15-22