scholarly journals Fractal Interpolation Using Harmonic Functions on the Koch Curve

2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Song-Il Ri ◽  
Vasileios Drakopoulos ◽  
Song-Min Nam

The Koch curve was first described by the Swedish mathematician Helge von Koch in 1904 as an example of a continuous but nowhere differentiable curve. Such functions are now characterised as fractal since their graphs are in general fractal sets. Furthermore, it can be obtained as the graph of an appropriately chosen iterated function system. On the other hand, a fractal interpolation function can be seen as a special case of an iterated function system thus maintaining all of its characteristics. Fractal interpolation functions are continuous functions that can be used to model continuous signals. An in-depth discussion on the theory of affine fractal interpolation functions generating the Koch Curve by using fractal analysis as well as its recent development including some of the research made by the authors is provided. We ensure that the graph of fractal interpolation functions on the Koch Curve are attractors of an iterated function system constructed by non-constant harmonic functions.

Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950113
Author(s):  
CHOL-HUI YUN

In this paper, we introduce a construction of hidden variable recurrent fractal interpolation functions (HVRFIFs) with four function contractivity factors. The HVRFIF is a hidden variable fractal interpolation function (HVFIF) constructed using a recurrent iterated function system (RIFS). In the fractal interpolation theory, it is very important to ensure flexibility and diversity of the construction of interpolation functions. RIFSs produce fractal sets with local self-similarity structure. Therefore, the RIFS can describe the irregular and complicated objects in nature better than the iterated function system (IFS). The HVFIF is neither self-similar nor self-affine one. Hence, the HVFIF is more complicated, diverse and irregular than the fractal interpolation function (FIF). The contractivity factors of IFS are very important one that determines characteristics of FIFs. The IFS and RIFS with function contractivity factors can describe the fractal objects in nature better than one with constant contractivity factors. To ensure higher flexibility and diversity of the construction of the FIFs, we present constructions of one variable HVRFIFs and bivariable HVRFIFs using RIFS with four function contractivity factors.


Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950141 ◽  
Author(s):  
S. K. KATIYAR ◽  
A. K. B. CHAND

The appearance of fractal interpolation function represents a revival of experimental mathematics, raised by computers and intensified by powerful evidence of its applications. This paper is devoted to establish a method to construct [Formula: see text]-fractal rational quartic spline, which eventually provides a unified approach for the generalization of various traditional nonrecursive rational splines involving shape parameters. We deduce the uniform error bound for the [Formula: see text]-fractal rational quartic spline when the original function is in [Formula: see text]. By solving a system of linear equations, appropriate values of the derivative parameters are determined so as to enhance the continuity of the [Formula: see text]-fractal rational quartic spline to [Formula: see text]. The elements of the iterated function system are identified befittingly so that the class of [Formula: see text]-fractal function [Formula: see text] incorporates the geometric features such as positivity, monotonicity and convexity in addition to the regularity inherent in the germ [Formula: see text]. This general theory in conjunction with shape preserving aspects of the traditional splines provides algorithms for the construction of shape preserving fractal interpolation functions.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Chol-Hui Yun ◽  
Mi-Kyong Ri

In this paper, we present a construction of hidden variable bivariate fractal interpolation functions (HVBFIFs) with function vertical scaling factors and estimate errors of HVBFIFs on perturbation of the function vertical scaling factor. We construct HVBFIFs on the basis of the iterated function system (IFS) with function vertical scaling factors. The perturbation of the function vertical scaling factors in the IFS causes a change in the HVBFIF. An upper estimation of the errors between the original HVBFIF and the perturbed HVBFIF is given.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 119
Author(s):  
Nallapu Vijender ◽  
Vasileios Drakopoulos

In this article, firstly, an overview of affine fractal interpolation functions using a suitable iterated function system is presented and, secondly, the construction of Bernstein affine fractal interpolation functions in two and three dimensions is introduced. Moreover, the convergence of the proposed Bernstein affine fractal interpolation functions towards the data generating function does not require any condition on the scaling factors. Consequently, the proposed Bernstein affine fractal interpolation functions possess irregularity at any stage of convergence towards the data generating function.


2006 ◽  
Vol 2006 ◽  
pp. 1-17 ◽  
Author(s):  
A. K. B. Chand ◽  
G. P. Kapoor

This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (1989), when the construction is not restricted to a particular type of boundary conditions. Spline CHFIFs are likely to be potentially useful in approximation theory due to effects of the hidden variables and these effects are demonstrated through suitable examples in the present work.


Fractals ◽  
1997 ◽  
Vol 05 (04) ◽  
pp. 625-634 ◽  
Author(s):  
Heping Xie ◽  
Hongquan Sun

In this paper, the methods of construction of a fractal surface are introduced, the principle of bivariate fractal interpolation functions is discussed. The theorem of the uniqueness of an iterated function system of bivariate fractal interpolation functions is proved. Moreover, the theorem of fractal dimension of fractal interpolated surface is derived. Based on these theorems, the fractal interpolated surfaces are created by using practical data.


Author(s):  
HUO-JUN RUAN ◽  
JIAN-CI XIAO ◽  
BING YANG

Abstract The notion of recurrent fractal interpolation functions (RFIFs) was introduced by Barnsley et al. [‘Recurrent iterated function systems’, Constr. Approx.5 (1989), 362–378]. Roughly speaking, the graph of an RFIF is the invariant set of a recurrent iterated function system on $\mathbb {R}^2$ . We generalise the definition of RFIFs so that iterated functions in the recurrent system need not be contractive with respect to the first variable. We obtain the box dimensions of all self-affine RFIFs in this general setting.


2020 ◽  
Vol 12 (8) ◽  
pp. 1038-1043
Author(s):  
Wadia Faid Hassan Al-Shameri

Barnsley (Barnsley, M.F., 1986. Fractal functions and interpolation. Constr. Approx., 2, pp.303–329) introduced fractal interpolation function (FIF) whose graph is the attractor of an iterated function system (IFS) for describing the data that have an irregular or self-similar structure. Barnsley et al. (Barnsley, M.F., et al., 1989. Recurrent iterated function systems in fractal approximation. Constr. Approx., 5, pp.3–31) generalized FIF in the form of recurrent fractal interpolation function (RFIF) whose graph is the attractor of a recurrent iterated function system (RIFS) to fit data set which is piece-wise self-affine. The primary aim of the present research is investigating the RFIF approach and using it for fitting the piece-wise self-affine data set in ℜ2.


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 161-170
Author(s):  
HONG-YONG WANG

The sensitivity analysis for a class of hidden variable fractal interpolation functions (HVFIFs) and their moments is made in the work. Based on a vector valued iterated function system (IFS) determined, we introduce a perturbed IFS and investigate the relations between the two HVFIFs generated by the IFS determined and its perturbed IFS, respectively. An explicit expression for the difference between the two HVFIFs is presented, from which, we show that the HVFIFs are not sensitive to a small perturbation in IFSs. Furthermore, we compute the moment integrals of the HVFIFs and discuss the error of moments of the two HVFIFs. An upper estimate for the error is obtained.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Alexandra Băicoianu ◽  
Cristina Maria Păcurar ◽  
Marius Păun

The present paper concretizes the models proposed by S. Ri and N. Secelean. S. Ri proposed the construction of the fractal interpolation function(FIF) considering finite systems consisting of Rakotch contractions, but produced no concretization of the model. N. Secelean considered countable systems of Banach contractions to produce the fractal interpolation function. Based on the abovementioned results, in this paper, we propose two different algorithms to produce the fractal interpolation functions both in the affine and non-affine cases. The theoretical context we were working in suppose a countable set of starting points and a countable system of Rakotch contractions. Due to the computational restrictions, the algorithms constructed in the applications have the weakness that they use a finite set of starting points and a finite system of Rakotch contractions. In this respect, the attractor obtained is a two-step approximation. The large number of points used in the computations and the graphical results lead us to the conclusion that the attractor obtained is a good approximation of the fractal interpolation function in both cases, affine and non-affine FIFs. In this way, we also provide a concretization of the scheme presented by C.M. Păcurar .


Sign in / Sign up

Export Citation Format

Share Document