scholarly journals Stability of a Class of Fractional-Order Nonlinear Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Tianzeng Li ◽  
Yu Wang

In this letter stability analysis of fractional order nonlinear systems is studied. Some new sufficient conditions on the local (globally) asymptotic stability for a class of fractional order nonlinear systems with order0<α<2are proposed by using properties of Mittag-Leffler function and the Gronwall inequality. And the corresponding stabilization criteria are also given. The numerical simulations of two systems with order0<α<1and two systems with order1<α<2illustrate the effectiveness and universality of the proposed approach.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Wang ◽  
Tianzeng Li

Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Wenbin Yang ◽  
Xiaozhou Feng ◽  
Shuhui Liang ◽  
Xiaojuan Wang

A fractional-order tumor-immune interaction model with immunotherapy is proposed and examined. The existence, uniqueness, and nonnegativity of the solutions are proved. The local and global asymptotic stability of some equilibrium points are investigated. In particular, we present the sufficient conditions for asymptotic stability of tumor-free equilibrium. Finally, numerical simulations are conducted to illustrate the analytical results. The results indicate that the fractional order has a stabilization effect, and it may help to control the tumor extinction.


Author(s):  
Jiandong Zhao ◽  
Tonghua Zhang ◽  
Zhixia Han

AbstractTo study the effect of environmental noise on the spread of the disease, a stochastic Susceptible, Infective, Removed and Susceptible (SIRS) model with two viruses is introduced in this paper. Sufficient conditions for global existence of positive solution and stochastically asymptotic stability of disease-free equilibrium in the model are given. Then, it is shown that the positive solution is stochastically ultimately bounded and the moment average in time of the positive solution is bounded. Our results mean that the environmental noise suppresses the growth rate of the individuals and drives the disease to extinction under certain conditions. Finally, numerical simulations are given to illustrate our main results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hai Zhang ◽  
Renyu Ye ◽  
Jinde Cao ◽  
Ahmed Alsaedi

This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.


2019 ◽  
Vol 41 (15) ◽  
pp. 4311-4321 ◽  
Author(s):  
Mai Viet Thuan ◽  
Dinh Cong Huong ◽  
Nguyen Huu Sau ◽  
Quan Thai Ha

This paper addresses the problem of unknown input fractional-order functional state observer design for a class of fractional-order time-delay nonlinear systems. The nonlinearities consist of two parts where one part is assumed to satisfy both the one-sided Lipschitz condition and the quadratically inner-bounded condition and the other is not necessary to be Lipschitz and can be regarded as an unknown input, making the wider class of considered nonlinear systems. By taking the advantages of recent results on Caputo fractional derivative of a quadratic function, we derive new sufficient conditions with the form of linear matrix inequalities (LMIs) to guarantee the asymptotic stability of the systems. Four examples are also provided to show the effectiveness and applicability of the proposed method.


2021 ◽  
Vol 6 (11) ◽  
pp. 12011-12027
Author(s):  
Jingfeng Wang ◽  
◽  
Chuanzhi Bai

<abstract><p>In this paper, we investigate and obtain a new discrete $ q $-fractional version of the Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of $ q $-fractional damped difference systems with time delay. Moreover, we formulate the novel sufficient conditions such that the $ q $-fractional damped difference delayed systems is finite time stable. Our result extend the main results of the paper by Abdeljawad et al. [A generalized $ q $-fractional Gronwall inequality and its applications to nonlinear delay $ q $-fractional difference systems, J.Inequal. Appl. 2016,240].</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document