scholarly journals Integrated Multiobjective Optimal Design for Active Control System Based on Genetic Algorithm

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ma Yong-Quan ◽  
Qiu Hong-Xing

The integrated multiobjective optimal design method for structural active control system is put forward based on improved Pareto multiobjective genetic algorithm, through which the position of actuator is synchronously optimized with active controller. External excitation is simulated by stationary filtered white noise. The root-mean-square (RMS) of structural response and active control force can be achieved by solving Lyapunov equation in the state space. The design of active controller adopts linear quadratic regulator (LQR) control algorithm. Minimum ratio of the maximum RMS of controlled structural displacement divided by the maximum RMS of uncontrolled structural displacement and minimum ratio of the maximum RMS of controlled structural shear divided by the maximum RMS of uncontrolled structural shear, together with minimization of the sum of RMS of active control force, are used as the three objective functions of multiobjective optimization. The optimization process takes the impact of structure and excitation parameter on the optimized results. An eight-storey six-span plane steel frame was used as an emulational example to demonstrate the validity of this optimization method. Results show that the proposed integrated multiobjective optimal design method is simple, efficient, and practical with good universality.

Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

As a method for semi-active control of structural systems, the active-control-based method that emulates the control force of a targeted active control law by semi-active control devices has been studied. In the active-control-based method, the semi-active control devices are not necessarily able to generate the targeted active control force because of the dissipative nature of those devices. In such a situation, the meaning of the targeted active control law becomes unclear in the sense of the control performance achieved by the resulting semi-active control system. In this study, a new semi-active control strategy that approximates the control output (not the control force) of the targeted active control is proposed. The variable parameter of the semi-active control device is selected at every time instant so that the predicted control output of the semi-active control system becomes close to the corresponding predicted control output of the targeted active control as much as possible. Parameters of the targeted active control law are optimized in the premise of the above “output emulation” strategy so that the control performance of the semi-active control becomes good and the “error” of the achieved control performance between the targeted active control and the semi-active control becomes small.


2012 ◽  
Vol 490-495 ◽  
pp. 2723-2727
Author(s):  
Yan Ting Ai ◽  
Jing Tian ◽  
Qi Fu ◽  
Feng Ling Zhang

This paper presents a new optimal design method based on genetic algorithm(GA)for broadband linear dynamic absorber. A New definition of the suppression bandwidth is described firstly. Then the method and procedure to optimize multi-parameters of broadband dynamic absorber is proposed. Effects of the natural frequency ratio, excitation frequency ratio, mass ratio, main system damping ratio and absorber ratio on the suppression bandwidth are discussed systematically. Finally the merits of genetic algorithm used for broadband linear dynamic absorber design are illustrated by contrasting it to a numerical method.


Sign in / Sign up

Export Citation Format

Share Document