scholarly journals Optimization Based High-Speed Railway Train Rescheduling with Speed Restriction

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Li Wang ◽  
Wenting Mo ◽  
Yong Qin ◽  
Fei Dou ◽  
Limin Jia

A decision support framework with four components is proposed for high-speed railway timetable rescheduling in case of speed restriction. The first module provides the speed restriction information. The capacity evaluation module is used to evaluate whether the capacity can fulfill the demand before rescheduling timetable based on deduction factor method. The bilayer rescheduling module is the key of the decision support framework. In the bilayer rescheduling module, the upper-layer objective is to make an optimal rerouting plan with selected rerouting actions. Given a specific rerouting plan, the lower-layer focuses on minimizing the total delay as well as the number of seriously impacted trains. The result assessment module is designed to invoke the rescheduling model iteratively with different settings. There are three prominent features of the framework, such as realized interaction with dispatchers, emphasized passengers’ satisfaction, and reduced computation complexity with a bilayer modeling approach. The proposed rescheduling model is simulated on the busiest part of Beijing to Shanghai high-speed railway in China. The case study shows the significance of rerouting strategy and utilization of the railway network capacity in case of speed restriction.

2016 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Wenjing Deng

<p style="margin: 0cm 0cm 0pt; line-height: 150%;"><span style="font-family: Times New Roman;"><span style="line-height: 150%; font-size: 12pt; mso-bidi-font-family: 'Times New Roman';" lang="EN-US">To reduce the total delay time of the high speed trains and produce high quality timetable, this paper establishes a model of the train rescheduling of high-speed railway, describing the related concepts of high speed train rescheduling with matrices. It takes the track number, operation intervals, train dwelling time at stations as constraints, the sum delayed time at all the stations as the operation goal to construct the model of train rescheduling on high speed railway. Based on the analysis of differential strategy of difference algorithm of, it proposes the differential algorithm for high speed</span><span style="line-height: 150%; font-size: 12pt; mso-bidi-font-family: 'Times New Roman';" lang="EN-US">train rescheduling based on triangle differential strategy and presents the steps of the algorithm. It proves the model effectiveness and the high efficiency and precision of the algorithm with the real data from Beijing-Guangzhou high speed railway. The method for the high speed train rescheduling based on the differential strategy presented in this paper is reasonable and feasible.</span></span></p>


2019 ◽  
Vol 11 (8) ◽  
pp. 2351
Author(s):  
Sairong Peng ◽  
Xin Yang ◽  
Hongwei Wang ◽  
Hairong Dong ◽  
Bin Ning ◽  
...  

This paper studies the train rescheduling problem on high-speed railway corridor in the situation where contingencies occur and lead to sudden deceleration of some trains. First, we develop an adaptive rescheduling strategy (AR-S) which allows normal trains to use reverse direction track to overtake front decelerating trains based on delay comparison under different path choices. Second, the traditional rescheduling strategy (TR-S) which does not allow any trains to switch tracks is mentioned as a sharp contrast to AR-S. Furthermore, a performance evaluation criterion is designed to evaluate the effectiveness of the train rescheduling approaches. Finally, numerical experiments carried out on Beijing-Tianjin intercity high-speed railway show that AR-S can reduce the total delay of trains up to 24% in comparison with TR-S.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


ICTE 2015 ◽  
2015 ◽  
Author(s):  
Qiangfeng Zhang ◽  
Haifeng Yan ◽  
Shaoquan Ni ◽  
Wenting Zhang

Sign in / Sign up

Export Citation Format

Share Document