performance evaluation criterion
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 3)

2020 ◽  
pp. 014459872095975
Author(s):  
Muhammad Sumair ◽  
Tauseef Aized ◽  
Syed Asad Raza Gardezi ◽  
Muhammad Waqas Aslam

This work compares the efficiency of historically used Weibull parameters estimation methods with newly developed method. Newly developed method has been termed as Combined Linearized Moment Method (CLMM). Five-year wind data at five locations namely Chaghi, Lehri, Badin, Hyderabad and Nankana Sahib (Pakistan) was used for the calculation of Weibull parameters. Efficiency was assessed and compared using R-Squared(R2), MSE, RMSE, wind error (WE), MAPE and Chi-test ([Formula: see text]). Each method was given a rank against each performance evaluation criterion and then an overall ranking was done. The study concluded that CLMM is the most accurate method among all while Empirical Method of Justus (EMJ) is the least accurate. Hence, CLMM can be used to estimate Weibull parameters for wind resource assessment with significant accuracy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 120 ◽  
Author(s):  
Misagh Irandoost Shahrestani ◽  
Akbar Maleki ◽  
Mostafa Safdari Shadloo ◽  
Iskander Tlili

Al2O3/water nanofluid conjugate heat transfer inside a microchannel is studied numerically. The fluid flow is laminar and a constant heat flux is applied to the axisymmetric microchannel’s outer wall, and the two ends of the microchannel’s wall are considered adiabatic. The problem is inherently three-dimensional, however, in order to reduce the computational cost of the solution, it is rational to consider only a half portion of the axisymmetric microchannel and the domain is revolved through its axis. Hence. the problem is reduced to a two-dimensional domain, leading to less computational grid. At the centerline (r = 0), as the flow is axisymmetric, there is no radial gradient (∂u/∂r = 0, v = 0, ∂T/∂r = 0). The effects of four Reynolds numbers of 500, 1000, 1500, and 2000; particle volume fractions of 0% (pure water), 2%, 4%, and 6%; and nanoparticles diameters in the range of 10 nm, 30 nm, 50 nm, and 70 nm on forced convective heat transfer as well as performance evaluation criterion are studied. The parameter of performance evaluation criterion provides valuable information related to heat transfer augmentation together with pressure losses and pumping power needed in a system. One goal of the study is to address the expense of increased pressure loss for the increment of the heat transfer coefficient. Furthermore, it is shown that, despite the macro-scale problem, in microchannels, the viscous dissipation effect cannot be ignored and is like an energy source in the fluid, affecting temperature distribution as well as the heat transfer coefficient. In fact, it is explained that, in the micro-scale, an increase in inlet velocity leads to more viscous dissipation rates and, as the friction between the wall and fluid is considerable, the temperature of the wall grows more intensely compared with the bulk temperature of the fluid. Consequently, in microchannels, the thermal behavior of the fluid would be totally different from that of the macro-scale.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3041 ◽  
Author(s):  
Budi Kristiawan ◽  
Agung Tri Wijayanta ◽  
Koji Enoki ◽  
Takahiko Miyazaki ◽  
Muhammad Aziz

A combination of two passive heat transfer enhancement techniques using a microfin structure and nanofluids was investigated numerically. TiO2/water nanofluids flowing inside a square minichannel with a microfin structure (SMM) were observed as a practical application. Increased heat transfer performance was investigated by observing the Nusselt number, friction factor, and performance evaluation criterion (PEC). Velocity and temperature profiles were also demonstrated at a laminar developing flow regime. The SMM used in this work had six microfins (N = 6) and TiO2/water nanofluids with various nanoparticle concentrations of 0.005, 0.01, and 0.1 vol.%. By combining nanofluids as working fluids and SMM as a passive heat transfer enhancement, the maximum PEC value of 1.2 was achieved at Re = 380 with a volume fraction of 0.01 vol.%. It is obvious that compared to water flowing inside the square minichannel microfin, the heat transfer can be increased by using only a nanofluid with a volume fraction of 0.01%. The combination of a microfin and nanofluids as working fluids is strongly recommended due to its excellent performance in terms of heat transfer and economic considerations.


2019 ◽  
Vol 29 (5) ◽  
pp. 1563-1589 ◽  
Author(s):  
Navid Ahmadi Cheloii ◽  
Omid Ali Akbari ◽  
Davood Toghraie

Purpose This study aims to numerically investigate the heat transfer and laminar forced and two-phase flow of Water/Cu nanofluid in a rectangular microchannel with oblique ribs with angle of attacks equal to 0-45°. This simulation was conducted in the range of Reynolds numbers of 5-120 in volume fractions of 0, 2 and 4 per cent of solid nanoparticles in three-dimensional space. Design/methodology/approach This study investigates the effect of the changes of angle of attack of rectangular rib on heat transfer and hydrodynamics of two-phase flow. This study was done in three-dimensional space and simulation was done with finite volume method. SIMPLEC algorithm and second-order discretization of equations were used to increase the accuracy of results. The usage of nanofluid, application of rips with different angles of attacks and using the two-phase mixture method is the distinction of this paper compared with other studies. Findings The results of this research revealed that the changing angle of attack of ribs is an effective factor in heat transfer enhancement. On the other hand, the existence of rib on the internal surfaces of a microchannel increases friction coefficient. By increasing the volume fraction of nanoparticles, due to the augmentation of fluid density and viscosity, the pressure drop increases significantly. For all of the angle of attacks studied in this paper, the maximum rate of performance evaluation criterion has been obtained in Reynolds number of 30 and the minimum amount of performance evaluation criterion was been obtained in Reynolds numbers of 5 and 120. Originality/value Many studies have been done in the field of heat transfer in ribbed microchannel. In this paper, the laminar flow in the ribbed microchannel Water/Cu nanofluid in a rectangular microchannel by using two-phase mixture method is numerically investigated with different volume fractions (0-4 per cent), Reynolds numbers (5-120) and angle of attacks of rectangular rib in the indented microchannel (0-45°).


2019 ◽  
Vol 11 (8) ◽  
pp. 2351
Author(s):  
Sairong Peng ◽  
Xin Yang ◽  
Hongwei Wang ◽  
Hairong Dong ◽  
Bin Ning ◽  
...  

This paper studies the train rescheduling problem on high-speed railway corridor in the situation where contingencies occur and lead to sudden deceleration of some trains. First, we develop an adaptive rescheduling strategy (AR-S) which allows normal trains to use reverse direction track to overtake front decelerating trains based on delay comparison under different path choices. Second, the traditional rescheduling strategy (TR-S) which does not allow any trains to switch tracks is mentioned as a sharp contrast to AR-S. Furthermore, a performance evaluation criterion is designed to evaluate the effectiveness of the train rescheduling approaches. Finally, numerical experiments carried out on Beijing-Tianjin intercity high-speed railway show that AR-S can reduce the total delay of trains up to 24% in comparison with TR-S.


Sign in / Sign up

Export Citation Format

Share Document