scholarly journals The Difference in Translaminar Pressure Gradient and Neuroretinal Rim Area in Glaucoma and Healthy Subjects

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Lina Siaudvytyte ◽  
Ingrida Januleviciene ◽  
Arminas Ragauskas ◽  
Laimonas Bartusis ◽  
Indre Meiliuniene ◽  
...  

Purpose. To assess differences in translaminar pressure gradient (TPG) and neuroretinal rim area (NRA) in patients with normal tension glaucoma (NTG), high tension glaucoma (HTG), and healthy controls.Methods. 27 patients with NTG, HTG, and healthy controls were included in the prospective pilot study (each group consisted of 9 patients). Intraocular pressure (IOP), intracranial pressure (ICP), and confocal laser scanning tomography were assessed. TPG was calculated as the difference of IOP minus ICP. ICP was measured using noninvasive two-depth transcranial Doppler device. The level of significanceP< 0.05 was considered significant.Results. NTG patients had significantly lower IOP (13.7(1.6) mmHg), NRA (0.97(0.36) mm2), comparing with HTG and healthy subjects,P< 0.05. ICP was lower in NTG (7.4(2.7) mmHg), compared with HTG (8.9(1.9) mmHg) and healthy subjects (10.5(3.0) mmHg); however, the difference between groups was not statistically significant (P>0.05). The difference between TPG for healthy (5.4(7.7) mmHg) and glaucomatous eyes (NTG 6.3(3.1) mmHg, HTG 15.7(7.7) mmHg) was statistically significant (P< 0.001). Higher TPG was correlated with decreased NRA (r= −0.83;P= 0.01) in the NTG group.Conclusion. Translaminar pressure gradient was higher in glaucoma patients. Reduction of NRA was related to higher TPG in NTG patients. Further prospective studies are warranted to investigate the involvement of TPG in glaucoma management.

2021 ◽  
Vol 23 (2) ◽  
pp. 85-91
Author(s):  
Guilherme Ortiz Pinto Cruz ◽  
Larissa Martins Costa ◽  
Cesar Penazzo Lepri ◽  
Ruchele Dias Nogueira ◽  
Regina Guenka Palma-Dibb ◽  
...  

AbstractThe aim of this study was to evaluate the color stability and the surface roughness of different composites brushed with toothpastes presenting different levels of abrasivity. Thirty discs of each material were obtained using michohybrid composites (Brilliant NG and Charisma Diamond) and a nanocomposite (Filtek Z350XT). The initial color (CIELab) and surface roughness (confocal laser scanning microscopy) of resin discs were evaluated. Afterwards, 10 specimens per group were brushed with the following dentifrices: Maximum Cavity Protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief. Brushing was performed with an electric toothbrush equipped with soft bristle head, with standard power and weight, for 30 minutes. Every 30 seconds, 1.0 ml of the slurry was injected between the bristles of the brush and the specimen. After abrasive challenge, the samples had their color and roughness reevaluated. Data were submitted to the Kruskal-Wallis test (color change) or the t-test (surface roughness). The level of significance was 5%. Results: Brushing did not significantly change the color of the composites tested in the study herein . On the other hand, the surface roughness of the composites was significantly affected by the abrasive challenge, regardless of the toothpaste used. The surface roughness change was similar for all the composites. The abrasive challenge with the toothpastes Maximum Cavity protection, Sensodyne Repair & Protect and Colgate Sensitive Pro-Relief was not able to significantly change the color of the composite resins. Nevertheless, the abrasive challenges significantly altered the surface roughness of all the evaluated composites. However, the changes in surface roughness were statistically similar in the microhybrid and nanofilled composites. Keywords: Composites Resins. Dentifrices. Color. ResumoO objetivo deste estudo foi avaliar a estabilidade de cor e a rugosidade superficial de diferentes resinas compostas escovadas com dentifrícios de diferentes níveis de abrasividade. Trinta discos de cada material foram obtidos utilizando compósitos micro-híbridos (Brilliant NG e Charisma Diamond) e um nanocompósito (Filtek Z350XT). A cor inicial (CIELab) e a rugosidade superficial (microscopia confocal de varredura a laser) dos discos de resina foram avaliadas. Em seguida, 10 amostras por grupo foram escovadas com os dentifrícios Máxima Proteção Anticáries, Sensodyne Repair & Protect e Colgate Sensitive Pro-Alívio. A escovação foi realizada com uma escova elétrica com cabeça de cerdas macias, com potência e peso padronizados, durante 30 minutos. A cada 30 segundos, 1,0 ml da pasta era injetada entre as cerdas da escova e a amostra. Após o desafio abrasivo, as amostras tiveram sua cor e rugosidade reavaliadas. Os dados foram submetidos ao teste de Kruskal-Wallis (alteração de cor) ou ao teste t (rugosidade da superfície) (α=5%). A escovação não alterou significativamente a cor dos compósitos. Por outro lado, a rugosidade superficial dos compósitos foi significativamente afetada pelo desafio abrasivo, independentemente do dentifrício utilizado. A alteração da rugosidade superficial foi semelhante para todos os compósitos. O desafio abrasivo com a Máxima Proteção Anticáries, o Sensodyne Repair & Protect e o Colgate Sensitive Pro-Alívio não foi capaz de alterar significativamente a cor das resinas. Diferentemente, os desafios abrasivos alteraram significativamente a rugosidade superficial de todos os compósitos avaliados. No entanto, as mudanças na rugosidade foram estatisticamente semelhantes nos compósitos micro-híbridos e nanoparticulado. Palavras-chave: Resinas Compostas. Dentifrícios. Cor.


Fine Focus ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 121-137
Author(s):  
Brandon M. Bauer ◽  
Lewis Rogers ◽  
Monique Macias ◽  
Gabriella Iacovetti ◽  
Alexander M. Woodrow ◽  
...  

Pseudomonas aeruginosa biofilms are implicated in chronic infections. A key element of P. aeruginosapathogenicity is the formation of a biofilm, a community of bacteria encased in an exopolymeric substance (EPS) that shields the bacteria from the host immune response and antibiotic treatment. A crucial step in biofilm production is a switch in motility from freely swimming, planktonic bacteria to twitching movement and then to attached and sedentary bacteria that develop into a mature pillar-shaped biofilm. A mucoid biofilm produces an excess of alginate and is clinically the most pathogenic and the most resistant to antibiotics. Biofilms from patients exhibit a wide variety of structure, motility, and levels of attachment. In vitrobiofilms do not exhibit such a wide variety of structure and physiology. The difference between in vivo and in vitro biofilms has made the translation of in vitro studies into in vivo treatments difficult. Under different growth conditions in our lab, the P. aeruginosa strain PAO1 demonstrates two phenotypes: a non-mucoid and a mucoid-like phenotype. Confocal laser scanning microscopy (CLSM) indicates the mucoid-like phenotype is intermediate in height to the non-mucoid phenotype and biofilms formed in a once-flow-through chamber. Both mucoid-like and non-mucoid phenotypes exhibit a significant increase in twitching between 24 and 72 hours of development. The mucoid-like phenotype had greater attachment at 72 hours compared to non-mucoid phenotype. Therefore, the two phenotypes observed in our lab may represent the effect of environment to stimulate development of two types of biofilms by PAO1.


1996 ◽  
Vol 271 (3) ◽  
pp. H996-H1003 ◽  
Author(s):  
R. L. Conhaim ◽  
L. A. Rodenkirch

To estimate the functional diameter of alveolar septal microvessels in zone 1, we perfused isolated rat lungs with fluorescent latex particles of specific diameters (0.24, 0.49, 1.05, or 4.0 microns) at pulmonary artery pressures (Ppulmart) that were either 5 or 10 cmH2O less than the air inflation pressure (Pinflat, 25 cmH2O). We then prepared samples for histology. Using a confocal, laser-scanning fluorescence microscope, we measured latex particle densities within the septal plane that ranged from 0.08 +/- 0.04 particles/microns2 (0.24-microns diameter particles) to 0.02 +/- 0.01 particles/microns2 (1.05-microns diameter particles). We found that 4.0-microns diameter particles were not able to enter septa at all. Latex particles were not present in all alveoli When Ppulmart was 5 cmH2O less than Pinflat, 32 +/- 6% of septa contained 0.24-microns diameter particles, but, when Ppulmart was 10 cmH2O less than Pinflat, 5 +/- 6% of septa contained these particles. Percentages were smaller for larger particles. We conclude that, when Ppulmart is both 5 and 10 cmH2O less than Pinflat, the functional diameter of accessible septal microvessels is > 1.05 but < 4.0 microns. Furthermore, the number of accessible septa decreases as the difference between Ppulmart and Pinflat widens.


1995 ◽  
Vol 32 (8) ◽  
pp. 99-105 ◽  
Author(s):  
S. W. Hermanowicz ◽  
U. Schindler ◽  
P. Wilderer

Fractal dimension was used to describe morphology of a biofilm. Images of biofilm sections were obtained with a confocal laser scanning microscope and were further enhanced using image analysis software. Fractal dimensions were estimated from the slopes of cross-correlation functions. Two geometric scales with different fractal dimensions were identified in the biofilm. Small scale biomass clusters (&lt; 5 μm) had fractal dimensions close to the topological dimension while the fractal dimensions of larger aggregates were considerably smaller. Anisotropic morphology was also detected by the difference of fractal dimensions and was possibly related to the direction of water flow.


2015 ◽  
Vol 100 (8) ◽  
pp. 1134-1138 ◽  
Author(s):  
Lina Siaudvytyte ◽  
Ingrida Januleviciene ◽  
Akvile Daveckaite ◽  
Arminas Ragauskas ◽  
Brent Siesky ◽  
...  

Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Sign in / Sign up

Export Citation Format

Share Document