scholarly journals Passive Switched Capacitor RF Front Ends for Spectrum Sensing in Cognitive Radios

2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.

Author(s):  
V D Rughwani ◽  
Sweta A Kahurke ◽  
Madhuri Pal ◽  
Prashant Rewatkar

Cognitive radios are expected to perform spectrum sensing and communication in the frequency range of tens of megahertz to about 10 GHz. As such, they pose tough architecture and circuit design problems. This paper deals with issues such as broadband, low-noise amplification, multidecade carrier frequency synthesis, and spectrum sensing. The paper also describes the effect of nonlinearity and local oscillator harmonics, demonstrating that cognitive radios entail more difficult challenges than do software-defined radios. Multi-decade synthesis techniques and RF-assisted sensing methods are also presented.


Sign in / Sign up

Export Citation Format

Share Document