scholarly journals Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Minh-Duc Tran ◽  
Hee-Jun Kang

This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator) in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper presents a novel nonsingular fast terminal sliding mode control scheme for a class of second-order uncertain nonlinear systems. First, a novel nonsingular fast terminal sliding mode manifold (NNFTSM) with adaptive coefficients is put forward, and a novel double power reaching law (NDP) with dynamic exponential power terms is presented. Afterwards, a novel nonsingular fast terminal sliding mode (NNFTSMNDP) controller is designed by employing NNFTSM and NDP, which can improve the convergence rate and the robustness of the system. Due to the existence of external disturbances and parameter uncertainties, the system states under controller NNFTSMNDP cannot converge to the equilibrium but only to the neighborhood of the equilibrium in finite time. Considering the unsatisfying performance of controller NNFTSMNDP, an adaptive disturbance observer (ADO) is employed to estimate the lumped disturbance that is compensated in the controller in real-time. A novel composite controller is presented by combining the NNFTSMNDP method with the ADO technique. The finite-time stability of the closed-loop system under the proposed control method is proven by virtue of the Lyapunov stability theory. Both simulation results and theoretical analysis illustrate that the proposed method shows excellent control performance in the existence of disturbances and uncertainties.


Sign in / Sign up

Export Citation Format

Share Document