scholarly journals Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
V. V. Strelchuk ◽  
O. F. Kolomys ◽  
E. B. Kaganovich ◽  
I. M. Krishchenko ◽  
B. O. Golichenko ◽  
...  

The SERS (surface enhanced Raman spectroscopy) substrates based on nanocomposite porous films with gold nanoparticles (Au NPs) arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107was shown.

2019 ◽  
Vol 10 ◽  
pp. 882-893 ◽  
Author(s):  
Bogusław Budner ◽  
Mariusz Kuźma ◽  
Barbara Nasiłowska ◽  
Bartosz Bartosewicz ◽  
Malwina Liszewska ◽  
...  

The results of studies on the fabrication and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 ± 0.2 nm to 143.2 ± 0.2 nm were deposited under different conditions on silicon substrates. Size and morphology of the fabricated silver nanoislands mainly depend on the substrate temperature, and number and energy of the laser pulses. SERS properties of the fabricated films were evaluated by measuring SERS spectra of para-mercaptoaniline (pMA) molecules adsorbed on them. SERS enhancement factors are shown to depend on the SNIF morphology, which is modified by changes of the deposition conditions. The highest enhancement factor in the range of 105 was achieved for SNIFs that have oval and circular silver nanoislands with small distances between them.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 760 ◽  
Author(s):  
Izabela Constantinoiu ◽  
Cristian Viespe

The influence of sensitive porous films obtained by pulsed laser deposition (PLD) on the response of surface acoustic wave (SAW) sensors on hydrogen at room temperature (RT) was studied. Monolayer films of TiO2 and bilayer films of Pd/TiO2 were deposited on the quartz substrates of SAW sensors. By varying the oxygen and argon pressure in the PLD deposition chamber, different morphologies of the sensitive films were obtained, which were analyzed based on scanning electron microscopy (SEM) images. SAW sensors were realized with different porosity degrees, and these were tested at different hydrogen concentrations. It has been confirmed that the high porosity of the film and the bilayer structure leads to a higher frequency shift and allow the possibility to make tests at lower concentrations. Thus, the best sensor, Pd-1500/TiO2-600, with the deposition pressure of 600 mTorr for TiO2 and 1500 mTorr for Pd, had a frequency shift of 1.8 kHz at 2% hydrogen concentration, a sensitivity of 0.10 Hz/ppm and a limit of detection (LOD) of 1210 ppm. SAW sensors based on such porous films allow the detection of hydrogen but also of other gases at RT, and by PLD method such sensitive porous and nanostructured films can be easily developed.


2006 ◽  
Vol 252 (13) ◽  
pp. 4667-4671 ◽  
Author(s):  
Nikoletta Jegenyes ◽  
Zsolt Toth ◽  
Bela Hopp ◽  
Jozsef Klebniczki ◽  
Zsolt Bor ◽  
...  

2009 ◽  
Vol 67 ◽  
pp. 127-130 ◽  
Author(s):  
Majumdar Sayanee ◽  
Banerji Pallab

In the present study we have used urea as the source for doping nitrogen in ZnO since the most successful acceptor type dopant is the group V element like nitrogen. The nitrogen doped ZnO films have been deposited on glass substrates using Pulsed Laser Deposition technique using 248 nm KrF laser at energy 300 mJ by varying the number of laser pulses with a repetition rate of 10 pulse/sec in vacuum (10-6 mbar) at a constant temperature of 300 °C. The XRD pattern confirms the formation of wurtzite structure of ZnO, which is polycrystalline in nature. We have also performed UV absorption spectroscopy and the band gap is found to be 3.4 eV. Resistivity of the film increases with the increase of thickness for the undoped ZnO samples where the carrier concentrations are found to be of the order of 1017 cm-3. The mobility of the as-grown film is found to be 24.9 cm2/V-s. After doping with nitrogen the carrier concentration drops to the order of 1015 cm-3 and the mobility becomes 1.5 cm2/V-s. The mobility slightly varies with thickness. The resistivity increases to 1.3 KΩ-cm and the film shows p-type behavior. The results are explained on the basis of the available theory.


Sign in / Sign up

Export Citation Format

Share Document